Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge ; : Cambridge University Press,
    UID:
    almafu_9959231171302883
    Umfang: 1 online resource (vi, 193 pages) : , digital, PDF file(s).
    ISBN: 1-107-15366-2 , 1-280-41625-4 , 9786610416257 , 0-511-18210-4 , 0-511-13042-2 , 0-511-19934-1 , 0-511-30002-6 , 0-511-54285-2 , 0-511-12889-4
    Serie: Cambridge tracts in mathematics ; 167
    Inhalt: Poincaré duality algebras originated in the work of topologists on the cohomology of closed manifolds, and Macaulay's dual systems in the study of irreducible ideals in polynomial algebras. These two ideas are tied together using basic commutative algebra involving Gorenstein algebras. Steenrod operations also originated in algebraic topology, but may best be viewed as a means of encoding the information often hidden behind the Frobenius map in characteristic p〈〉0. They provide a noncommutative tool to study commutative algebras over a Galois field. In this Tract the authors skilfully bring together these ideas and apply them to problems in invariant theory. A number of remarkable and unexpected interdisciplinary connections are revealed that will interest researchers in the areas of commutative algebra, invariant theory or algebraic topology.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Introduction -- Part I. Poincare Duality Quotients -- Part II. Macaulay's Dual Systems and Frobenius Powers -- Part III. Poincaré Duality and the Steenrod Algebra -- Part IV. Dickson, Symmetric, and Other Coinvariants -- Part V. The Hit Problem mod 2 -- Part VI. Macaulay's Inverse Systems and Applications. , English
    Weitere Ausg.: ISBN 0-521-85064-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz