UID:
edocfu_9960074352902883
Umfang:
1 online resource (532 pages)
ISBN:
0-12-818179-6
,
0-12-818178-8
Anmerkung:
Front Cover -- Strategic Planning for the Sustainable Production of Biofuels -- Copyright Page -- Contents -- Preface -- 1 Introduction -- 1.1 Importance of Biofuels and Biorefineries -- 1.2 Strategic Planning -- 1.3 Optimization -- 1.4 Sustainability -- 1.5 Description of the Book -- References -- Further Reading -- 2 Environmental Aspects in the Strategic Planning of a Biomass Conversion System -- 2.1 Introduction -- 2.2 Outline of the Optimization Model -- 2.3 Mathematical Model -- 2.3.1 Mass Balances -- 2.3.2 Maximum Availability for Feedstocks -- 2.3.3 Maximum Products Demand -- 2.3.4 Maximum Processing Limits -- 2.3.5 Objective Functions -- 2.3.6 Economic Objective -- 2.3.7 Environmental Objective -- 2.4 Solution Strategy -- 2.5 Case Study -- 2.6 Sensitivity Analysis -- 2.7 Concluding Remarks -- 2.8 Nomenclature for Chapter 2 -- 2.8.1 Parameters -- 2.8.2 Variables -- 2.8.3 Indexes -- References -- 3 Optimal Planning and Site Selection for Distributed Multiproduct Biorefineries Involving Economic, Environmental, and Soc... -- 3.1 Introduction -- 3.2 Problem Statement -- 3.3 Model Formulation -- 3.3.1 Mass Balances for Harvesting Sites -- 3.3.2 Mass Balances for Processing Hubs (Secondary Plants) -- 3.3.3 Raw Materials in Hubs -- 3.3.4 Products in Hubs -- 3.3.5 Mass Balances for the Main Plant -- 3.3.6 Raw Materials in the Main Plant -- 3.3.7 Products in the Main Plant -- 3.3.8 Mass Balances for Markets -- 3.3.9 Constraints for Total Product Sales -- 3.3.10 Storage Constraints -- 3.3.11 Transportation Constraints -- 3.3.12 Processing Constraints -- 3.3.13 Availability Constraints -- 3.3.14 Start and End Storage Constraints -- 3.3.15 Objective Functions -- 3.3.15.1 Economic objective function -- 3.3.15.2 Environmental objective function -- 3.3.15.3 Social objective function -- 3.3.16 Remarks on the Model -- 3.4 Case Study -- 3.5 Discussion.
,
3.6 Concluding Remarks -- 3.7 Nomenclature -- 3.7.1 Sets -- 3.7.2 Indexes -- 3.7.3 Parameters -- 3.7.4 Variables -- 3.7.5 Binary Variables -- 3.7.6 Boolean Variables -- References -- Further Reading -- 4 Distributed Biorefining Networks for the Value-Added Processing of Water Hyacinth -- 4.1 Introduction -- 4.2 Outline of the Model Formulation -- 4.3 Model Formulation -- 4.3.1 Mass Balance for the Harvesting of Water Hyacinth -- 4.3.2 Availability of the Harvested Water Hyacinth -- 4.3.3 Mass Balance for the Splitters Before the Processing Plants -- 4.3.4 Balances for Mixers Before the Processing Facilities -- 4.3.5 Balances for the Technologies Used in the Processing Facilities -- 4.3.6 Balances for the Mixers Before the Central Processing Facilities -- 4.3.7 Balances for the Technologies of Central Processing Facilities -- 4.3.8 Balances for the Splitters After Each Processing Facility -- 4.3.9 Balances for the Splitters After the Central Processing Facilities -- 4.3.10 Balances for the Markets -- 4.3.11 Demands for the Consumers -- 4.3.12 Balances for the Water Treatment in Each Source -- 4.3.13 Water Treatment Technology in Each Source -- 4.3.14 Mass Balance for the Splitters After the Water Treatment -- 4.3.15 Mass Balance for the Mixers Before Each Water Consumer -- 4.3.16 Component Balance for the Mixers Before Each Water Consumer -- 4.3.17 Demand for Water Consumers -- 4.3.18 Constraints for the Water Quality for Each Consumer -- 4.3.19 Operational Cost for the Processing Facilities -- 4.3.20 Capital Cost for the Processing Facilities -- 4.3.21 Operational Cost for the Central Processing Facilities -- 4.3.22 Capital Cost for the Central Processing Facilities -- 4.3.23 Operational Cost for the Water Treatment Units -- 4.3.24 Capital Cost for the Water Treatment Units -- 4.3.25 Harvesting Cost -- 4.3.26 Water Transportation Cost.
,
4.3.27 Biomass Transportation Cost -- 4.3.28 Products Transportation Cost -- 4.3.29 Total Operational Cost -- 4.3.30 Total Capital Cost -- 4.3.31 Total Sales -- 4.3.32 Total Net Annual Cost (Negative of Total Net Profit) -- 4.3.33 Percentage of Eliminated Water Hyacinth -- 4.4 Remarks on the Model -- 4.5 Results -- 4.6 Concluding Remarks -- 4.7 Nomenclature -- 4.7.1 Parameters -- 4.7.2 Variables -- 4.7.3 Binary Variables -- References -- 5 Optimization of the Supply Chain Associated to the Production of Bioethanol From Residues of Agave From the Tequila Proce... -- 5.1 Introduction -- 5.2 Problem Statement -- 5.3 Model Formulation -- 5.3.1 Mass Balances in Agave Cultivating Areas -- 5.3.2 Maximum Available Agave -- 5.3.3 Mass Balances in Tequila Industry -- 5.3.4 Residues of Agave Bagasse From the Tequila Industry -- 5.3.5 Mass Balances in Distributed Processing Plants for Bioethanol Production -- 5.3.6 Distribution of Products From Processing Plants to Markets -- 5.3.7 Product Demands -- 5.3.8 Cost of the Distributed Bioethanol Processing Plants -- 5.3.9 Transportation Cost for Stalks to Distributed and Central Plants -- 5.3.10 Transportation Cost From the Tequila Industries to Distributed and Central Bioethanol Processing Plants -- 5.3.11 Transportation Cost for Products -- 5.3.12 Objective Function -- 5.4 Case Study -- 5.4.1 Scenario A (Economic Solution With a Constraint of 1% for the Bioethanol Demand in Each Consumption Site) -- 5.4.2 Scenario B (Solution Without Constraint for the Demand of Bioethanol in the Markets) -- 5.4.3 Scenario C (Increasing the Cultivation Area) -- 5.5 Concluding Remarks -- 5.6 Nomenclature -- 5.6.1 Indexes -- 5.6.2 Sets -- 5.6.3 Parameters -- 5.6.4 Variables -- References -- 6 Financial Risk Assessment and Optimal Planning of Biofuels Supply Chains Under Uncertainty -- 6.1 Introduction -- 6.2 Problem Statement.
,
6.3 Mathematical Model Formulation -- 6.4 Objective 1: Expected Profit -- 6.5 Objective 2: Worst Case for the Net Annual Profit -- 6.6 Results and Discussion -- 6.6.1 Distribution of Raw Material Price Without Correlation -- 6.6.2 Case With Correlated Values -- 6.7 Concluding Remarks -- 6.8 Nomenclature -- 6.8.1 Variables -- 6.8.2 Binary Variables -- 6.8.3 Parameters -- 7 Stochastic Design of Biorefinery Supply Chains Considering Economic and Environmental Objectives -- 7.1 Introduction -- 7.2 Problem Statement -- 7.3 Mathematical Formulation -- 7.3.1 Availability of Raw Material -- 7.3.2 Mass Balances in the Suppliers -- 7.3.3 Mass Balances in the Processing Facilities -- 7.3.4 Mass Balances in the Markets -- 7.3.5 Demand Constraint -- 7.3.6 Relationships for the Input-Output of the Distributed Material -- 7.3.7 Transportation Limits and Transportation Costs -- 7.3.8 Processing Stages in the Processing Facilities -- 7.3.9 Processing Constraints for the First Stage -- 7.3.10 Processing Constraints for the Second Stage -- 7.3.11 Storage Modeling -- 7.3.12 Revenue From Selling Products -- 7.3.13 Raw Material Production Cost -- 7.3.14 Economic Objective Function -- 7.3.15 Environmental Objective -- 7.4 Solution Approach -- 7.4.1 Definition of the Superstructure -- 7.4.2 Identification of the Parameters Under Uncertainty -- 7.4.3 Sampling for Uncertain Parameters -- 7.4.4 Solving of the Associated Deterministic Optimization Problem -- 7.4.5 Comparison Between Different Supply Chain Topologies -- 7.4.6 Changing of the Upper Limit for the Environmental Impact -- 7.4.7 Standardized Regression Coefficients -- 7.5 Case Study -- 7.6 Computer-Aided Tools -- 7.7 Results and Discussion -- 7.8 Concluding Remarks -- 7.9 Nomenclature -- 7.9.1 Indexes -- 7.9.2 Variables -- 7.9.3 Parameters -- References.
,
8 Mixed-Integer Dynamic Optimization for Planning Distributed Biorefineries -- 8.1 Introduction -- 8.2 Problem Statement -- 8.3 Mixed-Integer Dynamic Mathematical Optimization Model -- 8.3.1 Raw Material Inventory at Suppliers -- 8.3.2 Raw Material Inventory at Processing Facilities -- 8.3.3 Raw Material Inventory at Main Processing Facility -- 8.3.4 Product Inventory at Processing Facilities -- 8.3.5 Product Inventory at Main Processing Facility -- 8.3.6 Product Inventory at Distribution Centers -- 8.3.7 Continuity of the Inventories at the Beginning and End of the Time Horizon -- 8.3.8 Raw Material Orders From General Facilities to Suppliers -- 8.3.9 Raw Material Orders From the Main Facility to Suppliers -- 8.3.10 Product Orders From the Distribution Centers to the Facilities -- 8.3.11 Product Orders From the Distribution Centers to the Main Facility -- 8.3.12 Product Orders From Consumers to the Distribution Centers -- 8.3.13 Continuity of the Inventories at the Beginning and End of the Horizon -- 8.3.14 Availability of Raw Material -- 8.3.15 Constraints for the Demand -- 8.3.16 Constraints to Control the Orders From Consumers to Distribution Centers -- 8.3.17 Constraints for Transported Flow Rate at the Outlet and Inlet Locations -- 8.3.18 Transportation Limits -- 8.3.19 Processing -- 8.3.20 Economies of Scale for Processing Facilities -- 8.3.21 Storage Modeling -- 8.3.22 Operating Cost -- 8.3.23 Total Capital Cost -- 8.3.24 Transportation Cost -- 8.3.25 Storage Cost -- 8.3.26 Net Annual Profit -- 8.3.27 Control Product Demand -- 8.4 Nonlinear Model Predictive Control Approach -- 8.5 Solution Approach for the MIDO Problem -- 8.6 Results -- 8.7 Conclusions -- 8.8 Nomenclature -- 8.8.1 Parameters -- 8.8.2 Binary Variables -- 8.8.3 Variables -- References -- Appendices: Code Used in the Book.
,
Appendix A GAMS Code for Model of Chapter 2, Environmental Aspects in the Strategic Planning of a Biomass Conversion System.
Sprache:
Englisch