Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Berlin : Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
    UID:
    edochu_18452_8886
    Umfang: 1 Online-Ressource (15 Seiten)
    Serie: Stochastic Programming E-Print Series 2000,2000,10
    Inhalt: We propose an alternative approach to stochastic programming based on Monte-Carlo sampling and stochastic gradient optimization. The procedure is by essence probabilistic and the computed solution is a random variable. The associated objective value is doubly random, since it depends on two outcomes: the event in the stochastic program and the randomized algorithm. We propose a solution concept in which the probability that the randomized algorithm produces a solution with an expected objective value departing from the optimal one by more than $\epsilon$ is small enough. We derive complexity bounds for this process. We show that by repeating the basic process on independent sample, one can significantly sharpen the complexity bounds.
    Sprache: Englisch
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz