Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    gbv_1689106085
    Umfang: 1 Online-Ressource(X, 229 p. 109 illus., 90 illus. in color.)
    Ausgabe: 1st ed. 2020.
    ISBN: 9783030390983
    Serie: Lecture Notes in Artificial Intelligence 11986
    Inhalt: Robust Functional Regression for Outlier Detection -- Transform Learning Based Function Approximation for Regression and Forecasting -- Proactive Fiber Break Detection based on Quaternion Time Series and Automatic Variable Selection from Relational Data -- A fully automated periodicity detection in time series -- Conditional Forecasting of Water Level Time Series with RNNs -- Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories -- Localized Random Shapelets -- Feature-Based Gait Pattern Classification for a Robotic Walking Frame -- How to detect novelty in textual data streams? A comparative study of existing methods -- Seq2VAR: multivariate time series representation with relational neural networks and linear autoregressive model -- Modelling Patient Sequences for Rare Disease Detection with Semi-supervised Generative Adversarial Nets -- Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems -- Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets using Deep Learning -- Learning Stochastic Dynamical Systems via Bridge Sampling -- Quantifying Quality of Actions Using Wearable Sensor -- An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis.
    Inhalt: This book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019. The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data. .
    Weitere Ausg.: ISBN 9783030390976
    Weitere Ausg.: ISBN 9783030390990
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe AALTD (4. : 2019 : Würzburg) Advanced analytics and learning on temporal data Cham : Springer, 2020 ISBN 9783030390976
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783030390990
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    Schlagwort(e): Zeitliches Datenbanksystem ; Deep learning ; Datenanalyse ; Big Data ; Bioinformatik ; Konferenzschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz