Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    gbv_1823896278
    Umfang: 1 Online-Ressource(XI, 76 p.)
    Ausgabe: 1st ed. 2018.
    ISBN: 9783031016844
    Serie: Synthesis Lectures on Communications
    Inhalt: Preface -- Acknowledgments -- Introduction -- Review of Consensus and Network Structure Estimation -- Distributed Node Counting in WSNs -- Noncentralized Estimation of Degree Distribution -- Network Center and Coverage Region Estimation -- Conclusions -- Bibliography -- Authors' Biographies.
    Inhalt: The area of detection and estimation in a distributed wireless sensor network (WSN) has several applications, including military surveillance, sustainability, health monitoring, and Internet of Things (IoT). Compared with a wired centralized sensor network, a distributed WSN has many advantages including scalability and robustness to sensor node failures. In this book, we address the problem of estimating the structure of distributed WSNs. First, we provide a literature review in: (a) graph theory; (b) network area estimation; and (c) existing consensus algorithms, including average consensus and max consensus. Second, a distributed algorithm for counting the total number of nodes in a wireless sensor network with noisy communication channels is introduced. Then, a distributed network degree distribution estimation (DNDD) algorithm is described. The DNDD algorithm is based on average consensus and in-network empirical mass function estimation. Finally, a fully distributed algorithm for estimating the center and the coverage region of a wireless sensor network is described. The algorithms introduced are appropriate for most connected distributed networks. The performance of the algorithms is analyzed theoretically, and simulations are performed and presented to validate the theoretical results. In this book, we also describe how the introduced algorithms can be used to learn global data information and the global data region.
    Weitere Ausg.: ISBN 9783031000508
    Weitere Ausg.: ISBN 9783031005565
    Weitere Ausg.: ISBN 9783031028120
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031000508
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031005565
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9783031028120
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz