Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_9959327640402883
    Format: 1 online resource (xv, 385 pages) : , illustrations
    ISBN: 9781615831753 , 1615831754 , 9780470382820 , 0470382821 , 9780470382813 , 0470382813
    Content: "Nano-CMOS Design for Manufacturability examines the challenges that design engineers face in the nano-scaled era, such as exacerbated effects and the proven design for manufacturability (DFM) methodology in the midst of increasing variability and design process interactions. In addition to discussing the difficulties brought on by the continued dimensional scaling in conformance with Moore's law, the authors also tackle complex issues in the design process to overcome the difficulties, including the use of a functional first silicon to support a predictable product ramp. Moreover, they introduce several emerging concepts, including stress proximity effects, contour-based extraction, and design process interactions."--Jacket.
    Note: 1. Introduction. 1.1 DFM -- Value proposition. 1.2 Deficiencies in Boolean-based Design Rules in the sub-wavelength regime [6].1.3 Impact of Variability on Yield and Performance. 1.4 The industry challenge -- disappearing process window. 1.5 Mobility enhancement techniques -- a new source of variability induced by design process interaction. 1.6 Design dependency of chip surface topology. 1.7 Newly exacerbated narrow width effect in nano-CMOS nodes. 1.8 Well proximity effect. 1.9 Scaling beyond 65nm drives the need for model based DFM solutions. 1.10 Summary. PART 1: NEWLY EXACERBATED EFFECTS. 2. Lithography related Aspects of DFM. 2.1 Economic motivations for DFM. 2.2 Lithographic tools and techniques for advanced technology nodes. 2.3 Lithography limited yield. 2.4 Lithography driven DFM Solutions. 3. Interaction of layout with transistor performance and stress engineering techniques. 3.1 Introduction. 3.2 Impact of stress on transistor performance. 3.3 Stress propagation. 3.4 Stress sources. 3.5 Introducing stress into transistors. PART 2: DESIGN SOLUTIONS. 4. Signal and Power Integrity. 4.1 Introduction. 4.2 Interconnect Resistance, Capacitance and Inductance. 4.3 Inductance Effects on Interconnect. 5. Analog and Mixed Signal Circuit Design for Yield and Manufacturability. 5.1 Introduction. 5.2 Guidelines. 5.3 Device Selection. 5.4 Device Size Heart Beat. 5.5 Device Matching. 5.6 Design Guidelines. 5.7 Layout Guidelines. 5.8 Test. 6. Design for Variability, Performance and Yield. 6.1 Introduction. 6.2 Impact of variations (introduced by both process and circuit operation) on the design. 6.3 Some Parametric Fluctuations with new implications for design .6.4 Process Variations in Interconnects. 6.5 Impact of Deep Sub-Micron Integration in SRAMs. 6.6 Impact of Layout Styles on Manufacturability, Yield and Scalability. 6.7 Design for variations. 6.8 Summary. PART 3: THE ROAD TO DFM. 7. Nano-CMOS design tools: Beyond model-based analysis and correction. 7.1 Introduction. 7.2 Electrical Design for Manufacturability (DFM).7.3 Criticality Aware DFM. 7.4 On Guardbands, Statistics, and Gaps. 7.5 Opportunistic Mindsets. 7.6 Futures at o 45nm .7.7 Summary. 7.8 References.
    Additional Edition: Print version: Nano-CMOS design for manufacturability. Hoboken, NJ : Wiley, ©2009 ISBN 9780470112809
    Language: English
    Keywords: Electronic books. ; Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages