UID:
almahu_9949198621302882
Format:
XIX, 689 p.
,
online resource.
Edition:
3rd ed. 2003.
ISBN:
9781461502159
Content:
In the decade since the publication of the second edition of Scanning Electron Microscopy and X-Ray Microanalysis, there has been a great expansion in the capabilities of the basic scanning electron microscope (SEM) and the x-ray spectrometers. The emergence of the variab- pressure/environmental SEM has enabled the observation of samples c- taining water or other liquids or vapor and has allowed for an entirely new class of dynamic experiments, that of direct observation of che- cal reactions in situ. Critical advances in electron detector technology and computer-aided analysis have enabled structural (crystallographic) analysis of specimens at the micrometer scale through electron backscatter diffr- tion (EBSD). Low-voltage operation below 5 kV has improved x-ray spatial resolution by more than an order of magnitude and provided an effective route to minimizing sample charging. High-resolution imaging has cont- ued to develop with a more thorough understanding of how secondary el- trons are generated. The ?eld emission gun SEM, with its high brightness, advanced electron optics, which minimizes lens aberrations to yield an - fective nanometer-scale beam, and "through-the-lens" detector to enhance the measurement of primary-beam-excited secondary electrons, has made high-resolution imaging the rule rather than the exception. Methods of x-ray analysis have evolved allowing for better measurement of specimens with complex morphology: multiple thin layers of different compositions, and rough specimens and particles. Digital mapping has transformed classic x-ray area scanning, a purely qualitative technique, into fully quantitative compositional mapping.
Note:
1. Introduction -- 1.1. Imaging Capabilities -- 1.2. Structure Analysis -- 1.3. Elemental Analysis -- 1.4. Summary and Outline of This Book -- Appendix A. Overview of Scanning Electron Microscopy -- Appendix B. Overview of Electron Probe X-Ray Microanalysis -- References -- 2. The SEM and Its Modes of Operation -- 2.1. How the SEM Works -- 2.1.1. Functions of the SEM Subsystems -- 2.1.1.1. Electron Gun and Lenses Produce a Small Electron Beam -- 2.1.1.2. Deflection System Controls Magnification -- 2.1.1.3. Electron Detector Collects the Signal -- 2.1.1.4. Camera or Computer Records the Image -- 2.1.1.5. Operator Controls -- 2.1.2. SEM Imaging Modes -- 2.1.2.1. Resolution Mode -- 2.1.2.2. High-Current Mode -- 2.1.2.3. Depth-of-Focus Mode -- 2.1.2.4. Low-Voltage Mode -- 2.1.3. Why Learn about Electron Optics? -- 2.2. Electron Guns -- 2.2.1. Tungsten Hairpin Electron Guns -- 2.2.1.1. Filament -- 2.2.1.2. Grid Cap -- 2.2.1.3. Anode -- 2.2.1.4. Emission Current and Beam Current -- 2.2.1.5. Operator Control of the Electron Gun -- 2.2.2. Electron Gun Characteristics -- 2.2.2.1. Electron Emission Current -- 2.2.2.2. Brightness -- 2.2.2.3. Lifetime -- 2.2.2.4. Source Size, Energy Spread, Beam Stability -- 2.2.2.5. Improved Electron Gun Characteristics -- 2.2.3. Lanthanum Hexaboride (LaB6) Electron Guns -- 2.2.3.1. Introduction -- 2.2.3.2. Operation of the LaB6 Source -- 2.2.4. Field Emission Electron Guns -- 2.3. Electron Lenses -- 2.3.1. Making the Beam Smaller -- 2.3.1.1. Electron Focusing -- 2.3.1.2. Demagnification of the Beam -- 2.3.2. Lenses in SEMs -- 2.3.2.1. Condenser Lenses -- 2.3.2.2. Objective Lenses -- 2.3.2.3. Real and Virtual Objective Apertures -- 2.3.3. Operator Control of SEM Lenses -- 2.3.3.1. Effect of Aperture Size -- 2.3.3.2. Effect of Working Distance -- 2.3.3.3. Effect of Condenser Lens Strength -- 2.3.4. Gaussian Probe Diameter -- 2.3.5. Lens Aberrations -- 2.3.5.1. Spherical Aberration -- 2.3.5.2. Aperture Diffraction -- 2.3.5.3. Chromatic Aberration -- 2.3.5.4. Astigmatism -- 2.3.5.5. Aberrations in the Objective Lens -- 2.4. Electron Probe Diameter versus Electron Probe Current -- 2.4.1. Calculation of dmin and imax -- 2.4.1.1. Minimum Probe Size -- 2.4.1.2. Minimum Probe Size at 10-30 kV -- 2.4.1.3. Maximum Probe Current at 10-30 kV -- 2.4.1.4. Low-Voltage Operation -- 2.4.1.5. Graphical Summary -- 2.4.2. Performance in the SEM Modes -- 2.4.2.1. Resolution Mode -- 2.4.2.2. High-Current Mode -- 2.4.2.3. Depth-of-Focus Mode -- 2.4.2.4. Low-Voltage SEM -- 2.4.2.5. Environmental Barriers to High-Resolution Imaging -- References -- 3. Electron Beam-Specimen Interactions -- 3.1. The Story So Far -- 3.2. The Beam Enters the Specimen -- 3.3. The Interaction Volume -- 3.3.1. Visualizing the Interaction Volume -- 3.3.2. Simulating the Interaction Volume -- 3.3.3. Influence of Beam and Specimen Parameters on the Interaction Volume -- 3.3.3.1. Influence of Beam Energy on the Interaction Volume -- 3.3.3.2. Influence of Atomic Number on the Interaction Volume -- 3.3.3.3. Influence of Specimen Surface Tilt on the Interaction Volume -- 3.3.4. Electron Range: A Simple Measure of the Interaction Volume -- 3.3.4.1. Introduction -- 3.3.4.2. The Electron Range at Low Beam Energy -- 3.4. Imaging Signals from the Interaction Volume -- 3.4.1. Backscattered Electrons -- 3.4.1.1. Atomic Number Dependence of BSE -- 3.4.1.2. Beam Energy Dependence of BSE -- 3.4.1.3. Tilt Dependence of BSE -- 3.4.1.4. Angular Distribution of BSE -- 3.4.1.5. Energy Distribution of BSE -- 3.4.1.6. Lateral Spatial Distribution of BSE -- 3.4.1.7. Sampling Depth of BSE -- 3.4.2. Secondary Electrons -- 3.4.2.1. Definition and Origin of SE -- 3.4.2.2. SE Yield with Primary Beam Energy -- 3.4.2.3. SE Energy Distribution -- 3.4.2.4. Range and Escape Depth of SE -- 3.4.2.5. Relative Contributions of SE1 and SE2 -- 3.4.2.6. Specimen Composition Dependence of SE -- 3.4.2.7. Specimen Tilt Dependence of SE -- 3.4.2.8. Angular Distribution of SE -- References -- 4. Image Formation and Interpretation -- 4.1. The Story So Far -- 4.2. The Basic SEM Imaging Process -- 4.2.1. Scanning Action -- 4.2.2. Image Construction (Mapping) -- 4.2.2.1. Line Scans -- 4.2.2.2. Image (Area) Scanning -- 4.2.2.3. Digital Imaging: Collection and Display -- 4.2.3. Magnification -- 4.2.4. Picture Element (Pixel) Size -- 4.2.5. Low-Magnification Operation -- 4.2.6. Depth of Field (Focus) -- 4.2.7. Image Distortion -- 4.2.7.1. Projection Distortion: Gnomonic Projection -- 4.2.7.2. Projection Distortion: Image Foreshortening -- 4.2.7.3. Scan Distortion: Pathological Defects -- 4.2.7.4. Moiré Effects -- 4.3. Detectors -- 4.3.1. Introduction -- 4.3.2. Electron Detectors -- 4.3.2.1. Everhart-Thornley Detector -- 4.3.2.2. "Through-the-Lens" (TTL) Detector -- 4.3.2.3. Dedicated Backscattered Electron Detectors -- 4.4. The Roles of the Specimen and Detector in Contrast Formation -- 4.4.1. Contrast -- 4.4.2. Compositional (Atomic Number) Contrast -- 4.4.2.1. Introduction -- 4.4.2.2. Compositional Contrast with Backscattered Electrons -- 4.4.3. Topographic Contrast -- 4.4.3.1. Origins of Topographic Contrast -- 4.4.3.2. Topographic Contrast with the Everhart-Thornley Detector -- 4.4.3.3. Light-Optical Analogy -- 4.4.3.4. Interpreting Topographic Contrast with Other Detectors -- 4.5. Image Quality -- 4.6. Image Processing for the Display of Contrast Information -- 4.6.1. The Signal Chain -- 4.6.2. The Visibility Problem -- 4.6.3. Analog and Digital Image Processing -- 4.6.4. Basic Digital Image Processing -- 4.6.4.1. Digital Image Enhancement -- 4.6.4.2. Digital Image Measurements -- References -- 5. Special Topics in Scanning Electron Microscopy -- 5.1. High-Resolution Imaging -- 5.1.1. The Resolution Problem -- 5.1.2. Achieving High Resolution at High Beam Energy -- 5.1.3. High-Resolution Imaging at Low Voltage -- 5.2. STEM-in-SEM: High Resolution for the Special Case of Thin Specimens -- 5.3. Surface Imaging at Low Voltage -- 5.4. Making Dimensional Measurements in the SEM -- 5.5. Recovering the Third Dimension: Stereomicroscopy -- 5.5.1. Qualitative Stereo Imaging and Presentation -- 5.5.2. Quantitative Stereo Microscopy -- 5.6. Variable-Pressure and Environmental SEM -- 5.6.1. Current Instruments -- 5.6.2. Gas in the Specimen Chamber -- 5.6.2.1. Units of Gas Pressure -- 5.6.2.2. The Vacuum System -- 5.6.3. Electron Interactions with Gases -- 5.6.4. The Effect of the Gas on Charging -- 5.6.5. Imaging in the ESEM and the VPSEM -- 5.6.6. X-Ray Microanalysis in the Presence of a Gas -- 5.7. Special Contrast Mechanisms -- 5.7.1. Electric Fields -- 5.7.2. Magnetic Fields -- 5.7.2.1. Type 1 Magnetic Contrast -- 5.7.2.2. Type 2 Magnetic Contrast -- 5.7.3. Crystallographic Contrast -- 5.8. Electron Backscatter Patterns -- 5.8.1. Origin of EBSD Patterns -- 5.8.2. Hardware for EBSD -- 5.8.3. Resolution of EBSD -- 5.8.3.1. Lateral Spatial Resolution -- 5.8.3.2. Depth Resolution -- 5.8.4. Applications -- 5.8.4.1. Orientation Mapping -- 5.8.4.2. Phase Identification -- References -- 6. Generation of X-Rays in the SEM Specimen -- 6.1. Continuum X-Ray Production (Bremsstrahlung) -- 6.2. Characteristic X-Ray Production -- 6.2.1. Origin -- 6.2.2. Fluorescence Yield -- 6.2.3. Electron Shells -- 6.2.4. Energy-Level Diagram -- 6.2.5. Electron Transitions -- 6.2.6. Critical Ionization Energy -- 6.2.7. Moseley's Law -- 6.2.8. Families of Characteristic Lines -- 6.2.9. Natural Width of Characteristic X-Ray Lines -- 6.2.10. Weights of Lines -- 6.2.11. Cross Section for Inner Shell Ionization -- 6.2.12. X-Ray Production in Thin Foils -- 6.2.13. X-Ray Production in Thick Targets -- 6.2.14. X-Ray Peak-to-Background Ratio -- 6.3. Depth of X-Ray Production (X-Ray Range) -- 6.3.1. Anderson-Hasler X-Ray Range -- 6.3.2. X-Ray Spatial Resolution -- 6.3.3. Sampling Volume and Specimen Homogeneity -- 6.3.4.Depth Distribution of X-Ray Production, ?(?z) -- 6.4. X-Ray Absorption -- 6.4.1. Mass Absorption Coefficient for an Element -- 6.4.2. Effect of Absorp
,
Pulse-Shaping Linear Amplifier and Pileup Rejection Circuitry -- 7.2.5. The Computer X-Ray Analyzer -- 7.2.6. Digital Pulse Processing -- 7.2.7. Spectral Modification Resulting from the Detection Process -- 7.2.7.1. Peak Broadening -- 7.2.7.2. Peak Distortion -- 7.2.7.3. Silicon X-Ray Escape Peaks -- 7.2.7.4. Absorption Edges -- 7.2.7.5. Silicon Internal Fluorescence Peak -- 7.2.8. Artifacts from the Detector Environment -- 7.2.9. Summary of EDS Operation and Artifacts -- 7.3. Wavelength-Dispersive Spectrometer -- 7.3.1. Introduction -- 7.3.2. Basic Description -- 7.3.3. Diffraction Conditions -- 7.3.4. Diffracting Crystals -- 7.3.5. The X-Ray Proportional Counter -- 7.3.6. Detector Electronics -- 7.4. Comparison of Wavelength-Dispersive Spectrometers with Conventional Energy-Dispersive Spectrometers -- 7.4.1. Geometric Collection Efficiency -- 7.4.2. Quantum Efficiency -- 7.4.3. Resolution -- 7.4.4. Spectral Acceptance Range -- 7.4.5. Maximum Count Rate -- 7.4.6. Minimum Probe Size -- 7.4.7. Speed of Analysis -- 7.4.8. Spectral Artifacts -- 7.5. Emerging Detector Technologies -- 7.5.1. X-Ray Microcalorimetery -- 7.5.2. Silicon Drift Detectors -- 7.5.3. Parallel Optic Diffraction-Based Spectrometers -- References -- 8. Qualitative X-Ray Analysis -- 8.1. Introduction -- 8.2. EDS Qualitative Analysis -- 8.2.1. X-Ray Peaks -- 8.2.2. Guidelines for EDS Qualitative Analysis -- 8.2.2.1. General Guidelines for EDS Qualitative Analysis -- 8.2.2.2. Specific Guidelines for EDS Qualitative Analysis -.
In:
Springer Nature eBook
Additional Edition:
Printed edition: ISBN 9781461349693
Additional Edition:
Printed edition: ISBN 9780306472923
Additional Edition:
Printed edition: ISBN 9781461502166
Language:
English
DOI:
10.1007/978-1-4615-0215-9
URL:
https://doi.org/10.1007/978-1-4615-0215-9