UID:
almahu_9949281189202882
Format:
1 online resource (520 p.)
Edition:
1st ed.
Content:
This book presents the advancements made in applied metrology in the field of Urban Drainage and Storm water Management over the past two decades in scientific research as well as in practical applications. Given the broadness of this subject (measuring principles, uncertainty in data, data validation, data storage and communication, design, maintenance and management of monitoring networks, technical details of sensor technology), the focus is on water quantity and a sound metrological basis. The book offers common ground for academics and practitioners when setting up monitoring projects in urban drainage and storm water management. This will enable an easier exchange of results so as to allow for a faster scientific progress in the field. A second, but equally important goal, is to allow practitioners access to scientific developments and gained experience when it comes to monitoring urban drainage and storm water systems. In-depth descriptions of international case studies covering all aspects discussed in the book are presented, along with self-training exercises and codes available for readers on a companion website.
Note:
Cover -- Contents -- Preface -- Acknowledgements -- List of Contributors -- List of Acronyms -- Chapter 1: General introduction and book layout -- ABSTRACT -- 1.1 INTRODUCTION -- 1.2 METROLOGY IN A BROADER SENSE REFLECTING ON UDSM -- 1.3 MAIN ELEMENTS IN UDSM METROLOGY -- 1.4 STRUCTURE OF THE BOOK AND THE LINKS BETWEEN CHAPTERS -- 1.5 MESSAGE BOXES -- REFERENCES -- Chapter 2: Sensors for rain measurements -- ABSTRACT -- 2.1 INTRODUCTION -- 2.2 RAIN GAUGES -- 2.3 DISDROMETERS -- 2.4 WEATHER RADAR -- 2.4.1 Introduction -- 2.4.2 Temporal and spatial resolution of radar data -- 2.4.3 Radar data quality, rainfall estimation, and radar data adjustment -- 2.4.4 Summary -- 2.5 MICROWAVE LINKS -- 2.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 3: Water level and discharge measurements -- ABSTRACT -- 3.1 INTRODUCTION -- 3.2 WATER LEVEL MEASUREMENT -- 3.2.1 The simplest sensor: a ruler -- 3.2.2 Pressure sensor -- 3.2.3 Ultrasonic sensor -- 3.2.4 Radar sensor -- 3.2.5 Summary -- 3.3 VELOCITY MEASUREMENTS -- 3.3.1 Ultrasonic travel time -- 3.3.2 Acoustic Doppler flowmeter -- 3.3.3 Velocity profilers -- 3.3.4 Free surface velocity measurements -- 3.3.5 Electromagnetic sensor -- 3.3.6 Manning-Strickler relation -- 3.3.7 Summary -- 3.4 DIRECT DISCHARGE MEASUREMENTS -- 3.4.1 Pre-calibrated devices -- 3.4.2 Q(h) relation using laboratory physical scale models -- 3.4.3 Chemical tracing -- 3.4.3.1 Principle -- 3.4.3.2 A nine step operation protocol -- 3.4.3.3 Examples of application -- 3.4.3.3.1 Rhodamine WT and de-icing salt tracings vs. flowmeter measurement of small discharges in a large sewer -- 3.4.3.3.2 Rhodamine WT tracing for two monitoring stations: large pipe, large discharges -- 3.4.4 Pumping stations -- 3.4.4.1 Introduction -- 3.4.4.2 Theoretical considerations -- 3.4.4.3 Quantities to be measured -- 3.4.4.4 Permanent monitoring set-up.
,
3.4.4.5 Temporary measurements -- 3.4.4.6 Incidental measurements -- 3.4.4.6.1 Measuring set-up for determining the hydraulic characteristic of the pressure main -- 3.4.4.6.2 Measuring set-up for determining the hydraulic characteristic of the pump -- 3.4.5 Use of computational fluid dynamics -- 3.4.6 Summary -- 3.5 INFILTRATION AND EXFILTRATION -- 3.5.1 Introduction -- 3.5.2 Large scale measurement of infiltration -- 3.5.3 Detailed monitoring of in- or exfiltration -- 3.5.3.1 General -- 3.5.3.1.1 Listening stick -- 3.5.3.1.2 Smoke testing -- 3.5.3.1.3 Dye testing -- 3.5.3.1.4 Flow monitoring -- 3.5.3.1.5 Pressure test -- 3.5.3.1.6 Tracing methods -- 3.5.3.1.7 Sampling and modelling -- 3.5.3.1.8 Distributed temperature sensing -- 3.5.3.1.9 Time domain reflectometry -- 3.5.3.1.10 Infrared thermography -- 3.5.3.1.11 Smartball -- 3.5.3.1.12 SAHARA -- 3.5.3.1.13 Leak noise correlation -- 3.5.3.1.14 Magnetic flux leakage -- 3.5.3.1.15 Ground penetrating radar -- 3.5.3.1.16 Multi-sensor systems -- 3.5.3.2 Electrical conductivity-based methods -- 3.5.3.2.1 Focused electro leak location (FELL) -- 3.5.3.2.2 Electrical resistivity tomography (ERT) -- 3.5.3.3 Tracer methods -- 3.5.3.3.1 QUEST-C method -- 3.5.3.3.2 DEST method -- 3.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 4: Measuring the water balance in stormwater control measures -- ABSTRACT -- 4.1 INTRODUCTION -- 4.2 DESCRIPTION OF THE WATER BALANCE -- 4.3 INFLOW, BYPASS, OUTFLOW AND OVERFLOW -- 4.3.1 Inflows -- 4.3.1.1 Obstruction of the flow sensor caused through the accumulation of sediment or debris -- 4.3.1.2 Transition of flows from subcritical to supercritical -- 4.3.1.3 Backwater influence from within the SCM itself during certain periods -- 4.3.1.4 Rating curve -- 4.3.2 Outflows -- 4.3.3 Bypass -- 4.4 STORAGE VOLUMES -- 4.5 INFILTRATION AND EXFILTRATION -- 4.5.1 Measuring infiltration.
,
4.5.1.1 Whole-of-system measurement -- 4.5.1.2 Infiltrometer-based measurement -- 4.5.2 Measuring exfiltration -- 4.5.3 Measuring groundwater intrusion -- 4.6 EVAPOTRANSPIRATION -- 4.6.1 Calculation of PET from meteorological data -- 4.6.2 Direct measurement of evapotranspiration, transpiration and evaporation -- 4.6.2.1 Flux chambers -- 4.6.2.2 Lysimetry -- 4.6.2.3 Sapflow -- 4.6.3 Stomatal conductance -- 4.6.4 Estimation of ET from the water balance -- 4.7 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 5: Data communication and storage -- ABSTRACT -- 5.1 INTRODUCTION -- 5.2 FROM IN SITU SENSORS TO DATA FILES - DATATRANSFER METHODS -- 5.3 FROM DATA FILES TO STRUCTURED DATABASE -- 5.3.1 Principles and advantages of relational databases -- 5.3.2 Existing DBMS and software solutions -- 5.3.3 Typical data structuration for environmental time series -- 5.3.4 Supply of information to databases -- 5.4 DATABASE INTEROPERABILITY -- 5.4.1 Definition and interest -- 5.4.2 Interoperability standards and examples -- 5.4.3 Practical recommendations -- 5.5 CASE STUDIES -- 5.5.1 Case study 1: BDOH (Base de Données des Observatoires en Hydrologie), a database for the storage and publication of long-term water observation data -- 5.5.1.1 Context and objectives -- 5.5.1.2 Structure and main features -- 5.5.1.3 Advantages and drawbacks -- 5.5.2 Case study 2: DoMinEau, an Excel-based database for water quality monitoring -- 5.5.2.1 Context and objectives -- 5.5.2.2 Structure and main features -- 5.5.2.3 Advantages and drawbacks -- 5.5.3 Case study 3: Data Grand Lyon - open data portal -- 5.5.4 Case study 4: local wireless based system for flood risk assessment and reduction - CENTAUR -- 5.6 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 6: Design of a monitoring network: from macro to micro design -- ABSTRACT -- 6.1 INTRODUCTION -- 6.2 MACRO DESIGN -- 6.2.1 General.
,
6.2.2 Choosing locations as a combinatorial problem -- 6.2.3 Considerations in choosing locations -- 6.2.4 Example of using a model as a design aid -- 6.2.5 Timescales, sampling frequency and measuring uncertainty -- 6.2.5.1 Application of a model to quantify timescales of a system -- 6.2.5.2 Upper and lower limits of the sampling frequency related to measurement uncertainty -- 6.2.5.2.1 Lower limit -- 6.2.5.2.2 Upper limit -- 6.2.5.2.3 Examples -- 6.2.6 Networks of rain gauges -- 6.3 MICRO DESIGN: FROM THE MACRO SAMPLING DESIGN PLAN TO UP AND RUNNING MONITORING STATIONS -- 6.3.1 Definition of the goals: long-term, mid and short-term installation - 24/7 and event sampling -- 6.3.2 Definition of the needs: hardware, software, maintenance, trained people -- 6.3.2.1 Step 1: selection of sensors -- 6.3.2.2 Step 2: data acquisition and control system -- 6.3.2.3 Step 3: communication network -- 6.3.2.4 Step 4: software and data storage solutions -- 6.3.2.5 Step 5: maintenance -- 6.3.2.6 Step 6: trained people and training -- 6.3.2.7 Step 7: general design and drawing -- 6.3.2.8 Step 8: optimization -- 6.3.2.9 Step 9: detailed 3D drawing of the monitoring station -- 6.3.3 First tests -- 6.3.3.1 Calibrate -- 6.3.3.2 Run, test, verify and correct -- 6.3.3.2.1 Getting the data as expected? -- 6.3.3.2.2 Redundancy, tracing experiment -- 6.3.3.2.3 Verify with data -- 6.3.3.3 Conclusion after the first tests -- 6.3.4 Once the monitoring station is operational -- 6.3.4.1 Site book -- 6.3.4.2 Continuous training of involved people -- 6.3.5 Example of micro design -- 6.4 ADVANCED AND EMERGING MONITORING TECHNOLOGIES -- 6.4.1 Event detection -- 6.4.2 DTS for infiltration -- 6.4.3 Optical methods for determining flow velocity fields -- 6.5 SUMMARY AND TRANSITION -- REFERENCES -- Chapter 7: Operation and maintenance -- ABSTRACT -- 7.1 INTRODUCTION.
,
7.2 HEALTH AND SAFETY -- 7.2.1 Health and safety management -- 7.2.1.1 Risk mitigation planning -- 7.2.1.2 Temporal dimension of safety management -- 7.2.2 Situation specific risk mitigation -- 7.2.2.1 Working in traffic-affected areas -- 7.2.2.1.1 Location and activities -- 7.2.2.1.2 Hazards and risks -- 7.2.2.1.3 Measures -- 7.2.2.2 Accessing underground structures and confined spaces -- 7.2.2.2.1 Location and activities -- 7.2.2.2.2 Hazards and risks -- 7.2.2.2.3 Measures -- 7.2.2.3 Working in and above water -- 7.2.2.3.1 Location and activities -- 7.2.2.3.2 Hazards and risks -- 7.2.2.3.3 Measures -- 7.2.2.4 Working in potentially hazardous atmospheres -- 7.2.2.4.1 Location and activities -- 7.2.2.4.2 Hazards and risks -- 7.2.2.4.3 Measures -- 7.2.2.5 Working with hazardous substances and biologic agents -- 7.2.2.5.1 Location and activities -- 7.2.2.5.2 Hazards and risks -- 7.2.2.5.3 Measures -- 7.3 OPERATION -- 7.3.1 General ideas on operation -- 7.3.2 Operation of rain measurement equipment -- 7.3.2.1 Site specification -- 7.3.2.2 Wind shields and bird spikes -- 7.3.2.3 Monitoring duration -- 7.3.3 Operation of discharge measurement -- 7.3.3.1 Preparation -- 7.3.3.2 Continuous monitoring -- 7.3.3.3 Monitoring campaigns -- 7.4 MAINTENANCE -- 7.4.1 General ideas on maintenance -- 7.4.2 Planning maintenance -- 7.4.3 Maintenance of rain measurement equipment -- 7.4.3.1 Tipping bucket rain gauges -- 7.4.3.2 Weighing rain gauges -- 7.4.4 Maintenance for discharge measurement -- 7.4.4.1 Battery exchange/energy management -- 7.4.4.2 Readout of data -- 7.4.4.3 Reparation or improvement of the systems -- 7.4.4.4 Calibration -- 7.4.4.5 Cleaning -- 7.4.4.6 Set internal logger clocks -- 7.4.4.7 Exchange desiccant of ventilated water level sensors -- 7.4.4.8 Standard procedure -- 7.4.4.9 Flow control structure maintenance -- 7.5 SITE VISITS.
,
7.6 SENSOR CALIBRATION AND VERIFICATION.
Additional Edition:
ISBN 9781789060102
Additional Edition:
ISBN 1789060109
Additional Edition:
ISBN 9781789060119
Additional Edition:
ISBN 1789060117
Language:
English