UID:
edoccha_9961535696502883
Format:
1 online resource (987 pages)
Edition:
2nd ed.
ISBN:
3-031-55960-6
Series Statement:
Advanced Textbooks in Control and Signal Processing Series
Note:
Intro -- Series Editors' Foreword -- Foreword -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 The Human Being as a Controller -- 1.1.1 Steering a Boat -- 1.1.2 Video Recording While Running -- 1.2 Feedback Is Omnipresent -- 1.2.1 A Predator-Prey System -- 1.2.2 Homeostasis -- 1.3 Real-Life Applications of Automatic Control -- 1.3.1 A Position Control System -- 1.3.2 A Velocity Control System -- 1.3.3 Robotic Arm -- 1.3.4 Automatic Steering of a Ship -- 1.3.5 A Gyro-Stabilized Video Camera -- 1.4 Nomenclature in Automatic Control -- 1.5 History of Automatic Control -- 1.6 Experimental Prototypes -- 1.7 Summary -- 1.8 Review Questions -- References -- 2 Linear Ordinary Differential Equations -- 2.1 First-Order Differential Equation -- 2.1.1 The a not equals 0aneq0 Case -- 2.1.2 The a equals 0a= 0 Case -- 2.1.3 Transfer Function -- 2.2 Second-Order Differential Equation -- 2.2.1 Graphical Study of the Solution -- 2.2.2 Transfer Function -- 2.3 Arbitrary Order Differential Equations -- 2.3.1 Real and Different Roots -- 2.3.2 Real and Repeated Roots -- 2.3.3 Complex Conjugate and Nonrepeated Roots -- 2.3.4 Complex Conjugated and Repeated Roots -- 2.3.5 Conclusions -- 2.4 Poles and Zeros in Higher-Order Systems -- 2.4.1 Approximate Pole-Zero Cancelation and Reduced-Order Models -- 2.4.2 Dominant Poles and Reduced-Order Models -- 2.4.3 Approximating the Transient Response of Higher-Order Systems -- 2.5 The Case of Sinusoidal Excitations -- 2.6 The Superposition Principle -- 2.7 First- and Second-Order Control Systems -- 2.7.1 Proportional Control of Velocity in a DC Motor -- 2.7.2 Proportional Position Control Plus Velocity Feedback for a DC Motor -- 2.7.3 Proportional-Derivative Position Control of a DC Motor -- 2.7.4 Proportional-Integral Velocity Control of a DC Motor -- 2.7.5 Why Not to Use PID Control for First-Order Systems.
,
2.8 Case Study: Electric Current Loops for Control of Electric Motors -- 2.9 Summary -- 2.10 Review Questions -- 2.11 Exercises -- References -- 3 Basic Tools for Arbitrary-Order Systems -- 3.1 Block Diagrams -- 3.2 The Rule of Signs -- 3.2.1 Second Degree Polynomials -- 3.2.2 First Degree Polynomials -- 3.2.3 Polynomials with Degree Greater Than or Equal to 3 -- 3.3 Routh's Stability Criterion -- 3.4 Steady-State Error -- 3.4.1 Step Desired Output -- 3.4.2 Ramp Desired Output -- 3.4.3 Parabola Desired Output -- 3.5 Case Study. An Electronic Oscillator -- 3.6 Summary -- 3.7 Review Questions -- 3.8 Exercises -- References -- 4 Time Response-Based Design -- 4.1 An Introductory Example -- 4.2 Plotting Root Locus Diagrams -- 4.2.1 Rules to Plot the Root Locus Diagram -- 4.3 DC Motor Control -- 4.3.1 Proportional Control of Position -- 4.3.2 Proportional-Derivative (PD) Control of Position -- 4.3.3 Proportional-Integral (PI) Control of Velocity -- 4.3.4 Performance Limitations of Proportional-Integral (PI) Control of Velocity ch4FortinoIEEEtierlocus -- 4.3.5 Proportional-Integral-Derivative (PID) Control of Position -- 4.3.6 Performance Limitations of Classical Proportional-Integral-Derivative (PID) Control -- 4.4 Control of a Ball and Beam System -- 4.4.1 Assigning the Desired Closed-Loop Poles for a Ball and Beam System -- 4.5 Case Study. Additional Notes on PID Control of Position -- 4.6 Summary -- 4.7 Review Questions -- 4.8 Exercises -- References -- 5 Frequency Response-Based Design -- 5.1 Frequency Response of Some Electric Circuits -- 5.1.1 A Series upper R upper CRC Circuit: Output at the Capacitance -- 5.1.2 A Series upper R upper CRC Circuit: Output at the Resistance -- 5.1.3 A Series upper R upper L upper CRLC Circuit: Output at the Capacitance -- 5.1.4 A Series upper R upper L upper CRLC Circuit: Output at the Resistance.
,
5.2 The Relationship Between Frequency Response and Time Response -- 5.3 Common Graphical Representations -- 5.3.1 Bode Diagrams -- 5.3.2 Polar Plots -- 5.4 Frequency Response-Based Model Identification -- 5.4.1 DC Motor Velocity Model -- 5.4.2 DC Motor Position Model -- 5.4.3 A Mechanism with Flexibility -- 5.5 Nyquist Stability Criterion -- 5.5.1 Contours Around Poles and Zeros -- 5.5.2 Nyquist Path -- 5.5.3 Poles and Zeros -- 5.5.4 Nyquist Criterion. A Special Case -- 5.5.5 Nyquist Criterion-the General Case -- 5.6 Stability Margins for Minimum Phase Systems -- 5.7 The Relationship Between Frequency Response and Time Response Revisited -- 5.7.1 Closed-Loop Frequency Response and Closed-Loop Time Response -- 5.7.2 Open-Loop Frequency Response and Closed-Loop Time Response -- 5.8 Analysis and Design Examples -- 5.8.1 Velocity Control in a DC Motor -- 5.8.2 PD Position Control of a DC Motor -- 5.8.3 Redesign of the PD Position Control for a DC Motor -- 5.8.4 PID Position Control of a DC Motor -- 5.8.5 Time-Varying References and Disturbances -- 5.8.6 A Ball and Beam System -- 5.9 Case Study. PID Control of an Unstable Plant -- 5.10 Summary -- 5.11 Review Questions -- 5.12 Exercises -- References -- 6 The State Variable Approach -- 6.1 Definition of State Variables -- 6.2 The Error Equation -- 6.3 Approximate Linearization of Nonlinear State Equations -- 6.3.1 Procedure for First-Order State Equations Without Input -- 6.3.2 General Procedure for Arbitrary Order State Equations with Arbitrary Number of Inputs -- 6.4 Some Results from Linear Algebra -- 6.5 Solution of a Linear Time-Invariant Dynamical Equation -- 6.6 Stability of a Dynamical Equation -- 6.7 Linearly Independent Functions of Time ch6chitsongchenestado -- 6.8 Controllability and Observability -- 6.8.1 Controllability -- 6.8.2 Observability -- 6.9 Transfer Function of a Dynamical Equation.
,
6.10 A Realization of a Transfer Function -- 6.11 Equivalent Dynamical Equations -- 6.12 State Feedback Control -- 6.13 State Observers -- 6.14 The Separation Principle -- 6.15 Case Study: Output-Feedback Control of a DC Motor -- 6.16 Summary -- 6.17 Review Questions -- 6.18 Exercises -- References -- 7 Advanced Topics in Control -- 7.1 Trade-Offs in Classical Control -- 7.1.1 Time-Domain Design Limitations -- 7.1.2 Frequency-Domain Design Limitations. Bode's Integral Constraints -- 7.2 Internal Model Principle -- 7.2.1 Simulation Example -- 7.3 Nonminimum Phase Systems -- 7.3.1 Linear Nonminimum Phase Systems -- 7.3.2 Nonlinear Nonminimum Phase Systems -- 7.4 Differential Flatness -- 7.4.1 Linear Single-Input Single-Output Systems -- 7.4.2 Linear Multiple-Input Multiple-Output Systems ch7SiraDCT -- 7.5 Describing Function Analysis -- 7.5.1 The Dead Zone Nonlinearity ch7DCTslotine,ch7Cagliari -- 7.5.2 The Saturation Nonlinearity ch7DCTslotine,ch7Cagliari -- 7.6 Summary -- 7.7 Review Questions -- 7.8 Exercises -- References -- 8 Discrete-Time Systems -- 8.1 The Sampling Process -- 8.2 Reconstructing Continuous-Time Functions from Discrete-Time Functions -- 8.2.1 Aliasing -- 8.2.2 Folding -- 8.2.3 Hidden Oscillation -- 8.2.4 Zero-Order Hold -- 8.3 script upper ZmathcalZ Transform -- 8.3.1 Transfer Functions of Sampled Systems -- 8.3.2 Transfer Function of Systems Including a Zero-Order Hold -- 8.4 Inverse script upper ZmathcalZ Transform -- 8.5 Stability of Discrete-Time Systems -- 8.6 Performance Limitations -- 8.7 Is upper X left parenthesis s right parenthesisX(s) the Limit of upper X left parenthesis z right parenthesisX(z) When upper T Subscript s Baseline right arrow 0Tsto0? -- 8.7.1 An Introductory Example -- 8.7.2 Result in ch8astrom84Discreto -- 8.7.3 The Proposed Procedure -- 8.7.4 A Different Approach. An Example -- 8.7.5 Conclusions.
,
8.7.6 Result in ch8astrom84Discreto Revisited -- 8.8 The Frequency Response Method -- 8.8.1 Nyquist Stability Criterion -- 8.8.2 Sensitivity Function for Discrete-Time Systems -- 8.8.3 An Illustrative Example -- 8.9 Effect of Sampling Period on Closed-Loop Response … -- 8.10 State Space Representation of Discrete-Time Systems -- 8.10.1 Stability -- 8.11 Summary -- 8.12 Review Questions -- 8.13 Exercises -- References -- 9 Control of PM Brushed DC Motor -- 9.1 Mathematical Model -- 9.2 Identification -- 9.2.1 Velocity Model. Step Response-Based Identification -- 9.2.2 Position Model-Step Response-Based Identification -- 9.3 Velocity Control -- 9.3.1 Proportional Control -- 9.3.2 Proportional-Integral (PI) Control of Velocity -- 9.4 Position Control -- 9.4.1 Proportional Position Control Plus Velocity Feedback -- 9.4.2 Proportional-Derivative (PD) Position Control -- 9.4.3 Proportional-Integral-Derivative (PID) Position Control -- 9.5 Trajectory Tracking -- 9.6 Control of a Mechanism with Flexibility -- 9.6.1 System Modeling -- 9.6.2 Controller Design -- 9.7 Experimental Prototype Construction -- 9.7.1 Microcontroller PIC16F877A C Program -- 9.7.2 Personal Computer Builder C++ Program -- 9.7.3 Other Experiments -- 9.8 Internal Model Principle -- 9.8.1 Experimental Results -- 9.9 PC Program Used in Experiments of Sect.9.8 -- 9.10 Inverted Pendulum Control -- 9.10.1 The Experimental Prototype -- 9.10.2 Limit Cycles -- 9.10.3 PID Control -- 9.11 Microcontroller Program Used for Experiments in Sect. 9.10 -- 9.12 Summary -- 9.13 Review Questions -- References -- 10 Control of a Ball and Beam System -- 10.1 Mathematical Model -- 10.1.1 Nonlinear Model -- 10.1.2 Linear Approximate Model -- 10.2 Prototype Construction -- 10.2.1 Ball Position xx Measurement System -- 10.2.2 Beam Angle thetaθ Measurement System -- 10.3 Parameter Identification.
,
10.3.1 Motor-Beam Subsystem.
Additional Edition:
ISBN 3-031-55959-2
Language:
English