UID:
edocfu_9960074323302883
Format:
1 online resource (780 pages)
ISBN:
0-12-814014-3
Note:
Front Cover -- Fundamentals and Applications of Fourier Transform mass Spectrometry -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Acknowledgments -- Section A: Historical chapters -- Chapter 1: Historical developments in Fourier transform ion cyclotron resonance mass spectrometry -- Introduction -- Developments before 1970 -- 1965 -- 1966 -- 1967 -- 1968 -- 1969 -- Developments from 1970 to 1980 -- 1970 -- 1971 -- 1972 -- 1973 -- 1974 -- 1975 -- 1976 -- 1977 -- 1978 -- 1979 -- 1980 -- Developments from 1981 to 1990 -- Developments from 1991 to 2000 -- Developments from 2001 -- Conclusion -- References -- Section B: Fundamental/technology chapters -- Chapter 2: Fundamentals of Orbitrap analyzer -- Principles of operation -- Non-ideal orbital traps and their calibration -- Advances in signal processing -- Fourier transform methods -- Autocorrelation methods -- Maximum likelihood parameter estimators -- Deconvolution method -- Evolution of the Orbitrap platform and selected applications -- Acknowledgments -- References -- Chapter 3: Fundamentals, strengths, and future directions for Fourier transform ion cyclotron resonance mass spectrometry -- FT-ICR fundamentals -- Significant recent developments in FT-ICR -- References -- Chapter 4: Fundamentals and simulations in FT-ICR-MS -- Ion motion in the electromagnetic field -- Ion motion in traps with quadrupolar type field distribution -- The detection of induced signal by cylindrical geometry electrodes -- Harmonics and multiple electrode detection -- The influence of inharmonicity of electrostatic field and inhomogeneity of the magnetic field on ion motion synchronization ... -- Ion traps with dynamic harmonization -- Coalecsence -- Conclusion -- References -- Chapter 5: Advanced fundamentals in Fourier transform mass spectrometry -- ICR and Orbitrap FTMS: A preamble.
,
Mass spectra processing: From a single to a summed (averaged) mass spectrum -- Representation of mass spectra in full and reduced profile modes -- FTMS resolution performance: Orbitrap and ICR -- Conclusions -- Acknowledgments -- References -- Chapter 6: Data processing and automation in Fourier transform mass spectrometry -- Introduction -- Noise and de-noising in FTMS -- Correct assignment of chemically relevant peaks in FTMS -- Magnitude mode detection in FT-ICR-MS -- Absorption mode detection in FT-ICR-MS -- Non-Fourier transform techniques -- Apodization -- Calibration -- The physics behind the need of additional terms in the calibration equation -- Further developed external calibration equations -- Beat patterns in time-domain FTMS transients [121] -- FT artifacts in FTMS and their implications on data processing -- Batch processing of FTMS mass spectra -- Automation of FTMS instruments -- Acknowledgments -- References -- Chapter 7: Fundamentals of two dimensional Fourier transform mass spectrometry -- Introduction -- Contemporary FT-ICR mass spectrometers and tandem mass spectrometry -- Mass spectrometry in the second dimension -- Interpretation of a 2D mass spectrum -- Noise in 2D-MS -- Resolving power and mass accuracy -- Alternative 2D-MS -- MSn/2D-MS -- Data acquisition and processing -- Data analysis -- Applications of 2D-MS -- Conclusion -- Glossary -- References -- Chapter 8: Trapped ion mobility spectrometry coupled to FT-ICR MS: Fundamentals and applications -- Introduction -- Background -- TIMS analyzer -- TIMS modes of operation -- SA-TIMS -- OSA-TIMS -- G-TIMS (linear, non-linear targeting and nonlinear stepping) -- 2D-TIMS-FT-ICR MS plots and Ko determination -- TIMS-TOF MS vs. TIMS-FT-ICR MS -- Conclusions -- Acknowledgments -- References.
,
Chapter 9: In situ metabolomics in cancer tissue by high-resolution mass spectrometry imaging -- Introduction -- Common preservation methods for cancer tissues -- MALDI-FT-ICR MSI in metabolomic-based cancer research -- Data processing in high-resolution MALDI MSI -- Discovery of diagnostic markers and tissue-based disease classification by mass spectrometry imaging -- Inter- and intratumoral heterogeneity at metabolite levels -- Therapy response prediction and prognosis -- Conclusion -- References -- Chapter 10: Fourier transform ion cyclotron resonance mass spectrometry and laser: A versatile tool -- Introduction -- Laser-matter and laser-molecule interactions in the solid or in the gas phase -- Laser-matter interaction in the solid phase -- Introduction -- General concepts of laser-matter interaction -- Standing of the laser fluence and laser irradiance -- Simulation of laser-matter interaction and influence of the electrons -- Principles of matrix-assisted laser desorption/ionization -- The laser induced acoustic desorption (LIAD) technique -- Laser-molecule or laser-ion interaction in the gas phase -- Laser gas phase ionization -- Laser gas phase ion dissociation -- Coupling of FT-ICR MS instruments to laser ionization sources -- First instruments fitted with internal ion sources -- Instruments fitted with external ion sources -- Laser-based ionization techniques at atmospheric pressure -- Mass spectrometry imaging (MSI or IMS) -- Some applications of laser ionization coupled to FT-ICR MS -- Inorganic compounds -- Study of inorganic cluster ions -- Study of gas phase thermochemistry of ions and cluster ions in the FT ICR cell -- Organic compounds -- Petroleomics (petroleum and bio-oils) -- Environmental organic contaminants -- Conclusions -- References -- Further reading -- Section C: Applications chapters.
,
Chapter 11: Metabolomics using Fourier transform mass spectrometry -- Introduction -- The metabolomic workflow -- Sample preparation -- Data acquisition -- Data preprocessing -- Statistical analyses -- Metabolite identification -- Data visualization -- The input of Fourier mass spectrometry to metabolite detection and quantification -- Direct introduction mass spectrometry -- LC/HRMS-based metabolomics -- High-throughput metabolomics -- Towards high-throughput LC/HRMS-MS metabolomics -- Handling and processing of Fourier transform mass spectrometry based metabolomic data -- Automatic peak detection, alignment and integration of features -- Removal of artifactual features -- Correction of analytical drifts and batch to batch variations -- Integrated data processing workflows -- The input of Fourier transform mass spectrometry to metabolome annotation and metabolite identification -- Conclusion and perspectives -- Acknowledgment -- References -- Chapter 12: Mass differences in metabolome analyses of untargeted direct infusion ultra-high resolution MS data -- Introduction to metabolomics -- Primary analysis: Annotation, identification, knowns and unknowns -- Secondary analysis: Pathways and fluxes -- Meaning and application of mass differences in mass spectrometry -- Mass differences in instrumental quality parameters -- Mass differences in UHR-MS data visualization -- Compositional space -- Traditional means of UHR-MS data visualization and interpretation -- Mass difference networks in the visualization and primary analysis of UHR-MS data -- MDiNs in primary data analysis -- MDiN's for dereplication -- MDiN's for third and fourth level identification -- MDiN strategies for second level identification -- MDiN strategies for contextualization of 4th level identification.
,
Mass difference networks in the visualization and secondary analysis of UHR-MS data -- Classical pathway mapping -- MDiNs in pathway modeling -- Genome scale metabolic models and flux analyzes -- Mass difference networks and genome scale models -- Mass difference enrichment analysis (MDEA) -- Conclusion -- References -- Chapter 13: FT-ICR MS and Orbitrap mass spectrometry approaches in environmental chemistry -- General introduction -- Drinking water and the discovery of new disinfection by-products -- DOM precursors of DBPs -- DBPs in drinking water -- DBPs in brackish and seawater -- DBPs in hydraulic fracturing fluids -- Characterization of organic constituents in wastewater and hydraulic fracturing fluids -- The composition of effluent organic matter (EfOM) -- Hydraulic fracturing organic matter -- Non-targeted approaches in characterizing pollutants -- Contaminants in surface and groundwater -- Contaminants in sediments -- Conclusions and suggestions for future work -- Acknowledgments -- References -- Chapter 14: Identification of biologically active peptides by means of Fourier transform mass spectrometry -- Introduction -- FTMS basics -- FTMS for mass fingerprinting of peptides -- Fourier transform tandem mass spectrometry -- Collisional activation -- Electron-based dissociation -- Photoactivation -- Combining different activation methods -- Conclusion -- References -- Chapter 15: Fourier transform mass spectrometry applied to Forensic Chemistry -- Introduction -- Illicit abused drugs -- Marijuana -- Cocaine -- Hallucinogens -- New psychoactive substances -- Foods and beverages falsification -- Evidence analysis -- Conclusions -- References -- Chapter 16: Fourier transform mass spectrometry applied to petroleomics -- Introduction -- Ionization methods -- Electrospray ionization -- Atmospheric pressure chemical ionization (APCI).
,
Atmospheric pressure photoionization (APPI).
Additional Edition:
ISBN 0-12-814013-5
Language:
English