Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY : Springer-Verlag New York, Inc
    UID:
    gbv_1655452959
    Format: Online-Ressource (XXI, 320 p, online resource)
    ISBN: 9780387227351
    Series Statement: Interdisciplinary Applied Mathematics 11
    Content: Analysis of Planar Linkages -- Graphical Synthesis in the Plane -- Planar Kinematics -- Algebraic Synthesis of Planar Chains -- Analysis of Spherical Linkages -- Spherical Kinematics -- Algebraic Synthesis of Spherical Chains -- Analysis of Spatial Chains -- Spatial Kinematics -- Algebraic Synthesis of Spatial Chains -- Platform Manipulators.
    Content: to introduce these techniques and additional background is provided in appendices. The ?rst chapter presents an overview of the articulated systems that we will be considering in this book. The generic mobility of a linkage is de?ned, and we separate them into the primary classes of planar, spherical, and spatial chains. The second chapter presents the analysis of planar chains and details their movement and classi?cation. Chapter three develops the graphical design theory for planar linkages and introduces many of the geometric principlesthatappearintheremainderofthebook.Inparticular,geometric derivations of the pole triangle and the center-point theorem anticipate analytical results for the spherical and spatial cases. Chapter four presents the theory of planar displacements, and Chapter ?ve presents the algebraic design theory. The bilinear structure of the - sign equations provides a solution strategy that emphasizes the geometry underlying linear algebra. The ?ve-position solution includes an elimi- tion step that is probably new to most students, though it is understood and well-received in the classroom. Chapters six and seven introduce the properties of spherical linkages and detail the geometric theory of spatial rotations. Chapter eight presents the design theory for these linkages, which is analogous to the planar theory. This material exercises the student’s use of vector methods to represent geometry in three dimensions. Perpendicular bisectors in the planar design theory become perpendicular bisecting planes that intersect to de?ne axes. The analogue provides students with a geometric perspective of the linear equations that they are solving.
    Note: Includes bibliographical references and index
    Additional Edition: ISBN 9780387989839
    Additional Edition: Erscheint auch als Druck-Ausgabe McCarthy, John Michael, 1952 - Geometric design of linkages New York : Springer, 2000 ISBN 0387989838
    Language: English
    Subjects: Engineering
    RVK:
    Keywords: Hebelgetriebe ; Kinematische Kette ; Diskrete Geometrie ; Differentialgeometrie ; Getriebesynthese
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Author information: McCarthy, John Michael 1952-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages