Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    kobvindex_HPB1292353116
    Format: 1 online resource (277 pages) : , illustrations (chiefly color).
    ISBN: 9789811680441 , 9811680442
    Series Statement: Intelligent control and learning systems ; volume 3
    Content: This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications.
    Note: Introduction -- Basic Statistical Fault Detection Problems -- Principal Component Analysis -- Canonical Variate Analysis -- Partial Least Squares Regression -- Fisher Discriminant Analysis -- Canonical Variate Analysis -- Fault Classification based on Local Linear Embedding -- Fault Classification based on Fisher Discriminant Analysis -- Quality-Related Global-Local Partial Least Square Projection Monitoring -- Locality-Preserving Partial Least-Squares Statistical Quality Monitoring -- Locally Linear Embedding Orthogonal Projection to Latent Structure (LLEPLS) -- Bayesian Causal Network for Discrete Systems -- Probability Causal Network for Continuous Systems -- Dual Robustness Projection to Latent Structure Method based on the L_1 Norm.
    Additional Edition: Print version: Wang, Jing Data-Driven Fault Detection and Reasoning for Industrial Monitoring Singapore : Springer Singapore Pte. Limited,c2022 9789811680434
    Language: English
    Keywords: Electronic books. ; Electronic books.
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages