UID:
almafu_9961219728002883
Format:
1 online resource (XII, 280 p.)
ISBN:
9783111025438
Series Statement:
De Gruyter Series in Nonlinear Analysis and Applications , 42
Content:
This book investigates how domain dependent quantities from geometry and physics behave when the domain is perturbed. Of particular interest are volume- and perimeter-preserving perturbations. The first and second derivatives with respect to the perturbation are exploited for domain functionals like eigenvalues, energies and geometrical quantities. They provide necessary conditions for optimal domains and are useful when global approaches like symmetrizations fail. The book is exampledriven and illustrates the usefulness of domain variations in various applications.
Note:
Frontmatter --
,
Preface --
,
Contents --
,
1 Overview of the basic problems --
,
2 Basic concepts --
,
3 Spherical harmonics and eigenvalue problems --
,
4 Variational formulas --
,
5 Geometric inequalities, convolutions, cost functions --
,
6 Domain variations for energies --
,
7 Discussion of the main results --
,
8 General strategy and applications --
,
9 Eigenvalue problems --
,
10 Quantitative estimates --
,
11 The Robin eigenvalues for α 〈 0 --
,
12 Problems with infinitely many positive and negative eigenvalues --
,
13 The torsion problem for α 〈 0 --
,
14 Problems in annular domains --
,
15 The first buckling eigenvalue of a clamped plate --
,
16 A fourth order Steklov problem --
,
A General remarks --
,
B Geometry --
,
C Sobolev spaces and inequalities --
,
D Bilinear forms --
,
Notation --
,
Bibliography --
,
Index
,
Issued also in print.
,
In English.
Additional Edition:
ISBN 9783111025810
Additional Edition:
ISBN 9783111025261
Language:
English
Subjects:
Mathematics
DOI:
10.1515/9783111025438
URL:
https://doi.org/10.1515/9783111025438
URL:
https://www.degruyter.com/isbn/9783111025438
URL:
Volltext
(URL des Erstveröffentlichers)
URL:
https://doi.org/10.1515/9783111025438
URL:
https://www.degruyter.com/isbn/9783111025438