Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9947363179502882
    Umfang: X, 226 p. , online resource.
    ISBN: 9783034880718
    Serie: Advanced Courses in Mathematics CRM Barcelona, Centre de Recerca Matemàtica
    Inhalt: Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
    Anmerkung: A Lagrangian Submanifolds -- I Lagrangian and special Lagrangian immersions in C“ -- II Lagrangian and special Lagrangian submanifolds in symplectic and Calabi-Yau manifolds -- B Symplectic Toric Manifolds -- I Symplectic Viewpoint -- II Algebraic Viewpoint -- C Geodesic Flows and Contact Toric Manifolds -- I From toric integrable geodesic flows to contact toric manifolds -- II Contact group actions and contact moment maps -- III Proof of Theorem I.38 -- List of Contributors.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9783764321673
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz