Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam ; : North-Holland Pub. Co. ;
    UID:
    almahu_9947367871802882
    Umfang: 1 online resource (441 p.)
    ISBN: 1-281-79738-3 , 9786611797386 , 0-08-087167-4
    Serie: North-Holland mathematics studies ; 56
    Inhalt: Convex Cones
    Anmerkung: Description based upon print version of record. , Front Cover; Convex Cones; Copyright Page; TABLE OF CONTENTS; PREFACE; CHAPTER I: LINEAR FUNCTIONALS; Chapter I.1. The Sandwich Theorem; 1.1 Semi groups; 1.2 Cones; 1.3 Some Consequences of the Sandwich Theorem; 1.4 Sum Theorem and Finite Decomposition Theorem; 1.5 Some elementary Applications; 1.6 The Riesz-König Theorem; 1.7 A Strassen-type Disintegration Theorem; 1.8 Some Applications; 1.9 Additional Remarks and Comments; Chapter I.2 Order Units and Lattice Cones; 2.1 Order Unit Cones; 2.2 The Kakutani-Krein-Stone-Yosida Theorem; 2.3 Order Complete Vector Lattices with Order Unit , 2.4 Lattice Cones2.5 Riesz Property and Finite Sum Property; 2.6 The Positive Dual Cone; 2.7 Dual Orders and the Cartier-Fell -Meyer Theorem; 2.8 Free Lattice Cones; 2.9 Simplicia1 Cones; 2.10 Characters; 2.11 Some Examples; 2.12 Remarks and Comments; CHAPTER II: REPRESENTING MEASURES; Chapter II.1 Countable Decomposition; 1.1 Preliminaries; 1.2 The Main Decomposition Theorems; 1.3 Dini Cones; 1.4 Weak Dini Cones; 1.5 Remarks and Comments; Chapter II.2 Representing Measures; 2.1 Decomposition Properties and Measure Theory; 2.2 Dini Cones and Representing Measures , 2.3 Weak Dini Cones and Signed Representing Measures2.4 Representing Measures on Weighted Cones; 2.5 Dirichlet States; 2.6 Elementary Examples and Applications; 2.7 Remarks and Comments; Chapter II.3 Boundaries; 3.1 Fixpoint Boundaries, Bauer's Maximum Principle and the Krein-Milman Theorem; 3.2 More Boundaries; 3.3 Choquet's Theorem; 3.4 Maximal Measures; 3.5 The Choquet-Meyer Theorem; 3.6 Dini Boundaries; 3.7 Remarks and Comments; Chapter II.4 Integral Representation of Operators taking Values in an Order Complete Vector Lattice; Chapter II.5 Generalized Hewitt-Nachbin Spaces , 5.1 Basic Definitions and their Meaning in the Classical Situation5.2 The F- Compactification; 5.3 The F- Realcompactification; 5.4 F- Pseudocompactness; 5.5 Some Consequences; 5.6 Remarks and Comments; Chapter II.6 Examples and Applications; 6.1 Completely Monotonic Functions; 6.2 Kendall ' s Theorem on Infinitely Divisible Completely Monotonic Function; 6.3 Multiplicative Cones; 6.4 Banach Algebras and Spectral Theory; 6.5 The Bochner-Weil Theorem; 6.6 The Lévy-Khintchine Formula; 6.7 Remarks and Comments; APPENDIX: Measures and the Riesz Representation Theorem; A 1 s- Algebras , A 2 MeasuresA 3 The Riesz Representation Theorem; A 4 The Radon-Nikodym Theorem; A 5 Signed and Lattice-valued Measures; REFERENCES; AUTHOR INDEX; SUBJECT INDEX , English
    Weitere Ausg.: ISBN 0-444-86290-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz