UID:
almafu_9960161238102883
Format:
1 online resource (448 pages) :
,
illustrations, tables
Edition:
1st ed.
ISBN:
0-12-813110-1
,
0-12-812981-6
Note:
Front Cover -- ANSYS Mechanical APDL for Finite Element Analysis -- Copyright Page -- Dedication -- Contents -- Preface -- Acknowledgments -- 1 Introduction to ANSYS and Finite Element Modeling -- 1.1 What Is the Finite Element Method? -- 1.2 Why Use the Finite Element Method? -- 1.3 Basic Procedure for Finite Element Analysis -- 1.4 Engineering Software-Not an Engineer -- 1.5 A Brief History of ANSYS and Finite Element Analysis -- 1.5.1 The Development of NASTRAN -- 1.5.2 The Development of ANSYS -- 1.5.3 The Evolution of ANSYS -- 1.6 ANSYS Today -- 1.7 ANSYS Licensing -- 1.8 Functionality and Features of the ANSYS Mechanical APDL Family -- 1.8.1 Can ANSYS…? -- 1.8.2 Steady-State and Time-Dependent Analyses -- 1.8.3 Physics Capabilities -- 1.8.4 Special Features -- 1.9 ANSYS: Backward Compatibility and Legacy Code -- 2 Interacting with ANSYS -- 2.1 ANSYS Simulation Environments -- 2.2 Communicating with ANSYS -- 2.2.1 ANSYS Commands -- 2.2.2 The Graphical User Interface -- 2.2.2.1 The Output Window -- 2.2.2.2 GUI Toolbars and Menus -- 2.2.2.3 Advantages and Disadvantages of using the GUI -- 2.2.3 The GUI Command Prompt -- 2.2.4 Input Files and Batch Files -- 2.3 How ANSYS Communicates with You -- 2.3.1 INFO Level Feedback -- 2.3.2 NOTE Level Feedback -- 2.3.3 WARNING Level Feedback -- 2.3.4 ERROR Level Feedback -- 2.3.5 FATAL Level Feedback -- 2.4 ANSYS Program Structure -- 2.4.1 Levels and Processors -- 2.4.2 The ANSYS Database -- 2.4.3 Types of Commands and Their Locations -- 2.4.3.1 Begin Level Commands -- 2.4.3.2 Processor Level Commands -- 2.5 ANSYS File Structure -- 2.5.1 The Database File -- 2.5.2 The Log File -- 2.5.3 The Lock File -- 2.5.4 The Error File -- 2.5.5 The Output File -- 2.5.6 The Results File -- 2.6 Saving Files and Results in ANSYS -- 2.6.1 Saving Database Files -- 2.6.2 Archiving Models -- 2.6.3 Rerunning Log Files.
,
2.6.4 Creating Input and Batch Files -- 2.7 Where is the Undo Button? -- 2.8 How Do You Specify Units? -- 2.9 Where to Find Help: The ANSYS Documentation -- 2.9.1 Reference Manuals -- 2.9.2 Programmer's Manuals -- 2.9.3 Examples Manuals -- 2.9.4 Analysis Guides -- 2.9.5 The Feature Archive -- 2.9.6 Additional Documentation -- 2.10 Where to Get Extra Help: ANSYS Technical Support -- Exercise 2-1 Static Axial Loading of a Notched Plate in Tension -- Overview -- Model Attributes -- Material Properties for 6061-T6 Aluminum -- Loads -- Constraints -- File Management -- Create a New Folder on Your Desktop Named "Intro-to-ANSYS" -- Create a New Folder in the "Intro-to-ANSYS" Folder Named "Exercise2-1" -- Open a New Session of ANSYS Using the Mechanical APDL Product Launcher -- Ensure That the Simulation Environment Is Set to "ANSYS" (Figure 2-1-2) -- Change the Working Directory to the New "Exercise2-1" Folder -- Change the Jobname to "Exercise2-1" -- Click Run to Start ANSYS -- Before You Begin -- Step 1: Define Geometry -- 1-1 Create a rectangle to represent the plate -- 1-2 Create a circle to represent the bottom notch -- 1-3 Create a circle to represent the upper notch -- 1-4 Save your progress -- 1-5 Subtract Areas 2 and 3 (the circles) from Area 1 (the rectangle) -- 1-6 Save the solid model geometry -- Step 2: Define Element Types -- 2-1 Define the elements type to use for this model -- Step 3: Define Material Properties -- 3-1 Create a linear elastic material model for 6061-T6 aluminum -- 3-2 Save your progress -- Step 4: Mesh -- 4-1 Create the mesh for the finite element model -- 4-2 Refine the mesh for the finite element model -- 4-3 Save your finite element mesh -- Step 5: Apply Constraint Boundary Conditions -- 5-1 Apply degree of freedom constraints to the model -- 5-2 Apply additional degree of freedom constraints to the model.
,
5-3 Save your constraints -- Step 6: Apply Load Boundary Conditions -- 6-1 Apply the load to the right edge of the plate -- 6-2 Save your loads -- Step 7: Set the Solution Options -- Step 8: Solve -- 8-1 Select everything in your model -- 8-2 Solve -- 8-3 Close the /Status Command Window -- 8-4 Close the note informing you that the solution is done -- 8-5 Save your results -- Step 9: Postprocess the Results -- 9-1 Plot the von Mises stress distribution in the plate -- Step 10: Compare and Verify the Results -- Close the Program -- Sample Input File -- 3 Creating and Importing Geometry -- 3.1 Considerations for Model Geometry -- 3.1.1 Choosing Direct Generation or Solid Modeling -- 3.1.2 Choosing Whether to Create or Import Solid Model Geometry -- 3.1.3 Choosing the Dimensionality of the Model -- 3.1.3.1 Characteristics of 1D, 2D, and 3D Models -- 3.1.3.2 Reducing Model Size Using Symmetry -- 3.1.4 Choosing How Much Detail to Include -- 3.2 Creating Model Geometry -- 3.2.1 Direct Generation of Nodes and Elements -- 3.2.2 Creating Model Geometry from the Bottom-Up -- 3.2.3 Creating Model Geometry from the Top Down -- 3.3 Boolean Operations -- 3.3.1 Boolean Options -- 3.3.2 Number Merging -- 3.3.3 Numbering in Boolean Operations -- 3.3.4 Boolean Operations: Model First, Mesh Second -- 3.3.5 Boolean Operation Errors -- 3.4 Deleting Solid Model Geometry -- 3.5 Importing Solid Model Geometry -- 3.5.1 Importing Solid Models Using IGES Files -- 3.5.2 Importing Solid Models Using Connection Products -- 3.5.3 Importing CAD Using ANSYS Workbench and DesignModeler -- 3.6 Coordinate Systems -- 3.6.1 Global Coordinate Systems -- 3.6.2 Local Coordinate Systems -- 3.6.3 The Display Coordinate System -- 3.7 The Working Plane -- 3.8 Solid Model Viewing -- 3.8.1 List -- 3.8.2 Plot -- 3.8.3 PlotCtrls -- 3.8.3.1 Plot Numbering Controls -- 3.8.3.2 Pan Zoom Rotate Menu.
,
Exercise 3-1 Bottom-Up Solid Modeling of a Plate With a Central Hole Using Quarter Symmetry -- Overview -- Model Attributes -- Material Properties for 6061-T6 Aluminum -- Loads -- Constraints -- File Management -- Create a new folder in your "Intro-to-ANSYS" folder named "Exercise3-1" -- Open a new session of ANSYS using the Mechanical APDL Product Launcher -- Change the Working Directory to the new "Exercise3-1" folder -- Change the Jobname to "Exercise3-1" -- Click Run to start ANSYS -- Step 1: Define Geometry -- 1-1 Create keypoints to define the lower left corner of the plate -- 1-2 Create keypoints to define the intersection of the hole with the plate -- 1-3 Turn on keypoint and line numbering -- 1-4 Create lines to represent the edges of the plate -- 1-5 Create a cylindrical local coordinate system -- 1-6 Create an arc to represent the hole in the plate -- 1-7 Return the active coordinate system to Global Cartesian -- 1-8 Create an area to represent the quarter plate with hole -- 1-9 Save the model geometry -- Step 2: Define Element Types -- 2-1 Define the element type to use for this model -- Step 3: Define Material Properties -- 3-1 Create a linear elastic material model for 6061-T6 aluminum -- 3-2 Save your progress -- Step 4: Mesh -- 4-1 Create the mesh for the finite element model -- 4-2 Refine the mesh along Line 5 -- 4-3 Save your finite element mesh -- Step 5: Apply Constraint Boundary Conditions -- 5-1 Apply symmetry constraints to the model -- 5-2 Save your constraints -- Step 6: Apply Load Boundary Conditions -- 6-1 Apply the load to the left edge of the plate -- 6-2 Save your loads -- Step 7: Set the Solution Options -- Step 8: Solve -- 8-1 Select everything in your model -- 8-2 Solve -- 8-3 Save your results -- Step 9: Postprocess the Results -- 9-1 Plot the von Mises stress distribution in the plate.
,
Step 10: Compare and Verify the Results -- Close the Program -- Sample Input File -- Exercise 3-2 Top-Down Solid Modeling of a Pipe Flange Using Symmetry -- Overview -- Model Attributes -- Material Properties for High Carbon Steel -- Loads -- File Management -- Create a new folder in your "Intro-to-ANSYS" folder named "Exercise3-2" -- Open a new session of ANSYS using the Mechanical APDL Product Launcher -- Change the Working Directory to the new "Exercise3-2" folder -- Change the Jobname to "Exercise3-2" -- Click Run to start ANSYS -- Step 1: Define Geometry -- 1-1 Create the pipe cylinder -- 1-2 Adjust the view -- 1-3 Bring the Create Cylinder by Dimensions dialog box back to the foreground -- 1-4 Create the flange cylinder -- 1-5 Overlap the two cylinders to create the pipe flange -- 1-6 List the volumes in the model to confirm that the overlap operation was successful -- 1-7 Save your progress -- 1-8 Create a solid cylinder to represent the first bolt hole -- 1-9 Change the coordinate system from Global Cartesian to Global Cylindrical -- 1-10 Copy the volume that will become the bolt hole to create the bolt circle -- 1-11 Subtract the bolt hole volumes to create the bolt holes -- 1-12 Rotate the model -- 1-13 Save the model geometry -- Step 2: Define Element Types -- 2-1 Define the element type required for this model -- Step 3: Define Material Properties -- 3-1 Create a thermal material model for high carbon steel -- 3-2 Save your progress -- Step 4: Mesh -- 4-1 Create the mesh for the finite element model -- 4-2 Refine the mesh -- 4-2-1 Refine the mesh in the entire model -- 4-2-2 Identify the number of the line where the outer edge of the pipe intersects the flange -- 4-2-3 Refine the mesh along the line where the pipe intersects the flange -- 4-3 Save your finite element mesh -- Step 5: Apply Constraint Boundary Conditions.
,
5-1 Apply symmetry constraints to the model.
Language:
English
Keywords:
Electronic books.