Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    London, England :ISTE Ltd,
    UID:
    almafu_9961445047302883
    Format: 1 online resource (325 pages)
    Edition: First edition.
    ISBN: 9781394256235 , 139425623X , 1394256213 , 9781394256211
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Presentation of Units, Symbols and Acronyms -- List of Formulae -- Chapter 1. Historical Perspectives -- 1.1. History of Rock-Eval® -- 1.2. Geographical distribution of Rock-Eval® devices worldwide and areas of application of the method -- Chapter 2. Principles and Methods -- 2.1. Analysis process -- 2.2. Schematic diagram of the Rock-Eval® 6 analyzer -- 2.3. Detectors -- 2.3.1. Flame ionization detector (FID) -- 2.3.2. CO-CO2-SO2 detectors -- 2.4. Thermograms -- 2.4.1. Pyrolysis: S1 parameter -- 2.4.2. Pyrolysis: S2 parameter -- 2.4.3. Pyrolysis: Tpeak/Tmax -- 2.4.4. Specificities of the S2 parameter: pyrolysis in an open medium -- 2.4.5. Pyrolysis: S3 and S3CO parameters -- 2.4.6. Oxidation: S4 parameters -- 2.4.7. Oxidation: S5 parameter -- 2.5. Methods and cycles -- 2.6. Rock-Eval® 7 Sulfur -- 2.7. Pollut-Eval® -- 2.7.1. Instrumentation -- 2.7.2. Pollut-Eval® method or multi-heating rate -- 2.7.3. Calculations and parameters used by the Pollut-Eval® method -- 2.7.4. Positioning of integration cursors -- Chapter 3. Parameters and Illustration of Results -- 3.1. Introduction -- 3.2. Rock-Eval® signals and basic parameters -- 3.2.1. Dividing thermograms into Rock-Eval® "signals" -- 3.2.2. Use of signals to calculate the organic and inorganic carbon contents of a sample -- 3.2.3. Case of contamination by thermolabile carbonates -- 3.2.4. Parameters indicating the elemental composition of the sample: hydrogen and oxygen indices -- 3.3. Key parameters for oil exploration -- 3.3.1. Rock-Eval® Bulk Rock -- Basic cycle parameters for the characterization of source rocks -- 3.3.2. Rock-Eval® Shale Play™ parameters for the characterization of liquid-rich source rocks -- 3.4. Parameters developed for soil analysis -- 3.4.1. HC thermal stability parameters. , 3.4.2. Fine-tuning and generalization of thermal stability parameters -- 3.4.3. What should we do with the wealth of parameters on the thermal stability of soil organic matter? -- 3.5. Development in progress on the mathematical processing of thermograms -- Chapter 4. Guidance on Sampling, Effects of Mineral Matrix and Other Artifacts on Thermograms -- 4.1. Sample collection, preparation and conservation -- 4.1.1. Recent lacustrine or marine sediments -- 4.1.2. Sedimentary rocks -- 4.1.3. Cores and drill cuttings -- 4.1.4. Specific cases of reservoir rocks and oils -- 4.1.5. Soils and polluted soils -- 4.1.6. Kerogens -- 4.2. Mineral matrix effects -- 4.2.1. Identification of mineral matrix effects on hydrocarbon compounds -- 4.2.2. Impact of matrix effects on Rock-Eval® parameters -- 4.2.3. Measurement of the activity of a mineral matrix and means of correcting its effect -- 4.2.4. Conclusions on the effects of mineral matrices -- 4.3. Other artifacts on thermograms related to the presence of minerals -- 4.4. Other artifacts and abnormal signals of instrumental origin -- Chapter 5. Comparison with Other Methods -- 5.1. The Rock-Eval® method at the crossroads of classical analytical methods -- 5.2. Elemental analysis -- 5.3. Chromatography -- 5.4. Thermal analysis -- 5.5. Comparison with other analyzers of the same type -- 5.6. Comparison with other types of samples -- Chapter 6. Characterization of Petroleum Source Rocks -- 6.1. Introduction -- 6.2. Characterization of conventional oil source rocks and isolated organic matter (kerogens) -- 6.3. Characterization of oil samples -- 6.4. Characterization of hydrocarbons from source rocks -- 6.5. Composition of hydrocarbons detected by Rock-Eval® pyrolysis -- 6.6. Estimation of hydrocarbon reserves in place -- 6.7. Estimation of free hydrocarbons in porous media. , Chapter 7. Determining the Parameters of Thermal Cracking of Fossil Organic Matter -- 7.1. Introduction -- 7.2. Basic equations for thermal cracking -- 7.3. Experimental determination of kinetic parameters of kerogen -- 7.4. Calculation of the overall kinetic parameters of kerogen in an open system -- 7.5. Acquisition and optimization of kinetic parameters E and A -- 7.6. How are the absolute values of E and A, obtained in the laboratory, used to calculate the values of TR under geological conditions? -- 7.6.1. Effect of compensation between E and A under laboratory conditions -- 7.6.2. Shape of the curve of the error function optimized to calculate the value of A -- 7.7. Summary -- Chapter 8. Characterization of Sulfur Compounds -- 8.1. Introduction -- 8.2. Experimental device -- 8.3. Characterization of sulfur in kerogens -- 8.3.1. Thermograms -- 8.3.2. Origin of the analyzed sulfur compounds -- 8.3.3. Calculation of "sulfur" parameters -- 8.4. Characterization of sulfur in oil source rocks -- 8.5. Kinetics of cracking of the organosulfur compounds of organic matter -- 8.6. Characterization of sulfur in oils -- 8.7. Characterization of sulfur in reservoir rocks -- 8.8. Prospects for the application of Rock-Eval® 7 Sulfur in understanding the sulfur sedimentary cycle -- 8.9. Prospects for the application of Rock-Eval® 7S in industry -- Chapter 9. Study of Organic Matter in Recent Sediments -- 9.1. Introduction -- 9.2. Reminder of the principles of analysis of recent sediments by the Rock-Eval® method -- 9.3. Analysis of fresh organic matter and pure compounds -- 9.4. Continental archives as witnesses of environmental changes -- 9.4.1. Suspended particulate matter and fluvial archives -- 9.4.2. Lacustrine archives, reservoirs -- 9.4.3. Peatlands -- 9.5. Coastal and marine environments -- 9.5.1. Mangroves -- 9.5.2. Epicontinental seas. , 9.5.3. Deep turbidite systems -- 9.5.4. Upwellings -- 9.5.5. Sapropel deposits -- 9.5.6. Marine sediments of coral origin -- 9.6. Relationships between organic matter and contaminant concentrations -- Chapter 10. Characterization and Evaluation of the Stability of Soil Organic Matter -- 10.1. Introduction -- 10.2. Relevance and general teachings of Rock-Eval® analysis of soil samples -- 10.2.1. Analyzing soils with Rock-Eval®, a reasonable diversion -- 10.2.2. A marked evolution in Rock-Eval® parameters with soil depth -- 10.2.3. Rock-Eval® signal specificities of certain soil types, soil horizons and soil aggregates -- 10.3. Difficulties in linking the Rock-Eval® signature and chemical composition of soil organic matter -- 10.3.1. Contributions of Rock-Eval® analysis of pure compounds -- 10.3.2. Links between chemical composition of soil organic matter determined by various methods and Rock-Eval® signature -- 10.4. Evaluation of soil organic carbon stability by Rock-Eval® -- 10.4.1. What is the biogeochemical stability of soil organic carbon? -- 10.4.2. Links between Rock-Eval® results and biogeochemical stability of soil organic matter observed in the field -- 10.4.3. Links between Rock-Eval® results and the usual techniques for quantifying the biogeochemical stability of soil organic carbon -- 10.5. Quantifying soil organic carbon stability using Rock-Eval® with a view to improving soil carbon dynamics models -- 10.5.1. Soil organic carbon dynamics models -- 10.5.2. Construction of the stable carbon model at the century scale -- 10.5.3. Using the PARTYSOC machine learning model to estimate the size of the stable kinetic compartment of the AMG soil C dynamics model -- 10.6. Conclusion -- Chapter 11. Study of Natural and Anthropogenic Events -- 11.1. Introduction -- 11.2. Events of geological origin -- 11.2.1. Hydrothermal circulations. , 11.2.2. Radiolysis and other U/organic matter relationships -- 11.2.3. Magmatic and metamorphic events -- 11.3. Fires and signature of incomplete combustion residues -- 11.4. Weathering versus syndiagenetic oxidation -- 11.5. Artificial oxidation -- Chapter 12. Detection and Monitoring of Oil Pollution in the Environment -- 12.1. Introduction -- 12.2. The Pollut-Eval® method -- 12.2.1. Principle and equipment -- 12.2.2. Quantification and characterization of pollutants -- 12.2.3. Characteristic pyrograms of reference hydrocarbon cuts -- 12.2.4. Two characteristic examples extracted from the reference database -- 12.2.5. Examples of characteristic ratios for the diagnosis of contaminated soils -- 12.3. Influence of the natural organic matrix of soils on the observed responses -- 12.3.1. Types of samples and natural soils analyzed -- 12.3.2. Correlation between the different pyrolysis and oxidation signals -- Chapter 13. Analysis of Carbonates -- 13.1. Reminder of the principles of mineral carbon analysis using the Rock-Eval® method -- 13.2. Kinetic effects -- 13.3. Artifacts -- 13.4. Discrimination and quantification of different carbonate mineral species using the Rock-Eval® method -- 13.5. Corrections in case of the presence of siderite -- 13.6. From Rock-Eval® MinC to carbonate percentage -- 13.7. TOC and MinC relationships in sediments and sedimentary rocks -- 13.8. Concluding remarks -- Chapter 14. What's Next for Rock-Eval®? -- References -- List of Authors -- Index -- EULA.
    Additional Edition: Print version: Baudin, Francois The Rock-Eval Method Newark : John Wiley & Sons, Incorporated,c2024
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages