Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford :Butterworth-Heinemann,
    UID:
    edoccha_9960074176302883
    Format: 1 online resource (iv, 355 pages) : , illustrations
    Edition: Second edition.
    ISBN: 0-12-804234-6
    Note: Cove -- Title Page -- Copyright Page -- Contents -- List of figures -- List of tables -- 1 - Site investigation and soil conditions -- 1.1 - Origin of rocks and soils -- 1.1.1 - Earth cools down -- 1.1.2 - Rock weathering -- 1.1.3 - Brief overview of rocks -- 1.1.3.1 - Igneous rocks -- 1.1.3.1.1 - Extrusive igneous rocks -- 1.1.3.1.2 - Intrusive igneous rocks -- 1.1.3.2 - Sedimentary rocks -- 1.1.3.3 - Metamorphic rocks -- 1.1.3.3.1 - Formation of metamorphic rocks -- 1.2 - Soil strata types -- 1.2.1 - Water -- 1.2.1.1 - Alluvial deposits (river beds) -- 1.2.1.2 - Marine deposits -- 1.2.1.3 - Lacustrine deposits (lake beds) -- 1.2.2 - Wind deposits (eolian deposits) -- 1.2.3 - Glacial deposits -- 1.2.4 - Colluvial deposits -- 1.2.5 - Residual soil (weathered in situ soil) -- 1.3 - Site investigation -- 1.3.1 - Cohesion -- 1.3.2 - Friction -- 1.3.3 - Measurement of friction -- 1.3.4 - Measurement of cohesion -- 1.4 - Origin of a project -- 1.4.1 - Geotechnical investigation procedures -- 1.4.2 - Literature survey -- 1.4.2.1 - Adjacent property owners -- 1.4.2.2 - Aerial surveys -- 1.4.3 - Field visit -- 1.4.3.1 - Hand augering -- 1.4.3.2 - Sloping ground -- 1.4.3.3 - Nearby structures -- 1.4.3.4 - Contaminated soils -- 1.4.3.5 - Underground utilities -- 1.4.3.6 - Overhead power lines -- 1.4.3.7 - Man-made fill areas -- 1.4.3.8 - Field visit checklist -- 1.5 - Pile foundations versus shallow foundations -- 1.5.1 - Soil modification -- 1.6 - Subsurface investigation phase -- 1.6.1 - Soil strata identification -- 1.6.2 - Augering -- 1.6.3 - Mud rotary drilling -- 1.6.4 - Boring program -- 1.6.5 - Test pits -- 1.6.6 - Hand digging prior to drilling -- 1.7 - Geotechnical field tests -- 1.7.1 - SPT (N) value -- 1.8 - SPT (N) and friction angle -- 1.9 - Field tests -- 1.9.1 - Pocket penetrometer -- 1.9.2 - Vane shear test. , 1.9.3 - Cone penetration testing -- 1.9.4 - Friction ratio -- 1.10 - Pressure meter testing -- 1.10.1 - The equal pressure increment method -- 1.10.2 - The equal volume increment method -- 1.10.3 - SPT-CPT correlations -- 1.10.4 - Standard CPT device -- 1.10.5 - Standard SPT device -- 1.10.6 - Dilatometer testing -- References -- 2 - Geophysical methods -- 2.1 - Ground-penetrating radar methods -- 2.1.1 - General methodology -- 2.1.2 - Single borehole GPR -- 2.1.3 - Procedure -- 2.1.4 - Cross-hole GPR -- 2.2 - Seismic method -- 2.2.1 - Reflected seismic waves versus refracted seismic waves -- 2.2.2 - Seismic P- and S-waves -- 2.2.2.1 - S-Waves -- 2.2.2.2 - Surface waves -- 2.2.3 - Down-hole seismic testing -- 2.2.4 - Cross-hole seismic testing -- 3 - Groundwater -- 3.1 - Introduction -- 3.1.1 - Magmatic water -- 3.1.2 - Connate water -- 3.1.3 - Metamorphic water -- 3.1.4 - Juvenile water -- 3.2 - Vertical distribution of groundwater -- 3.2.1 - Soil-water zone -- 3.2.2 - Intermediate vadose zone -- 3.2.3 - Capillary zone -- 3.3 - Aquifers, aquicludes, aquifuges, and aquitards -- 3.3.1 - Aquifer -- 3.3.2 - Aquiclude -- 3.3.3 - Aquitard -- 3.3.4 - Aquifuges -- 3.3.5 - Piezometric surface versus groundwater level -- 3.3.6 - Aquitard under pressure -- 3.3.7 - Vertical upward groundwater flow -- 3.3.8 - Vertical groundwater flow -- 3.3.9 - Monitoring wells -- 3.3.10 - Aquifers with artesian pressure -- Reference -- 4 - Foundation types -- 4.1 - Shallow foundations -- 4.2 - Mat foundations -- 4.3 - Pile foundations -- 4.4 - Caissons -- 4.5 - Foundation selection criteria -- 5 - Pile types -- 5.1 - Displacement Piles -- 5.2 - Nondisplacement piles -- 5.3 - Timber piles -- 5.3.1 - Timber pile decay: biological agents -- 5.3.1.1 - Fungi -- 5.3.1.1.1 - Identification of fungi attack -- 5.3.1.2 - Marine borers -- 5.3.1.3 - Preservation of timber piles. , 5.3.2 - Shotcrete encasement of timber piles -- 5.3.3 - Timber pile installation -- 5.3.3.1 - Splicing of timber piles -- 5.4 - Steel 'H' piles -- 5.4.1 - Splicing of H-piles -- 5.4.2 - Guidelines for splicing (international building code) -- 5.5 - Pipe piles -- 5.5.1 - Closed-end pipe piles -- 5.5.2 - Open-end pipe piles -- 5.5.2.1 - Ideal situations for open-end pipe piles -- 5.5.2.2 - Telescoping -- 5.5.2.3 - Splicing of pipe piles -- 5.6 - Precast concrete piles -- 5.6.1 - Reinforced concrete piles -- 5.6.2 - Prestressed concrete piles -- 5.6.3 - Hollow-tubular section concrete piles -- 5.6.4 - Driven cast-in-place concrete piles -- 5.6.5 - Splicing of concrete piles -- 5.7 - Augercast piles (continuous flight auger piles) -- 5.7.1 - Construction methodology -- 5.7.2 - Casing removal type -- 5.7.3 - Skin friction in cased augercast pile -- 5.7.4 - Skin friction in partially cased augercast pile -- 5.8 - Frankie piles -- 5.9 - Delta piles -- 5.10 - Vibrex piles (casing removal type) -- 5.11 - Compressed base type -- 5.12 - Precast piles with grouted base -- 5.12.1 - Capacity of grouted base piles -- 5.13 - Mandrel driven piles -- 5.14 - Composite piles -- 5.14.1 - Pipe pile/timber pile composite -- 5.14.2 - Precast concrete piles with H-section -- 5.14.3 - Uncased concrete and timber piles -- 5.15 - Fiber-reinforced plastic piles -- 5.15.1 - Materials used -- 5.15.2 - Types of FRP piles -- 5.15.2.1 - Plastic pile with a steel core -- 5.15.2.2 - Reinforced plastic piles -- 5.15.2.3 - Fiberglass pipe piles -- 5.15.2.4 - Plastic lumber -- 5.15.3 - Use of wave equation for plastic piles -- 6 - Selection of piles -- 6.1 - H-sections -- 6.2 - Concrete piles -- 6.3 - Augercast piles -- 6.4 - Open- and closed-end pipe piles -- 6.5 - Concrete piles -- 6.6 - Augercast piles -- 6.7 - H-piles -- 7 - Static and dynamic analysis. , 7.1 - Pile design in sandy soils (static analysis) -- 7.1.1 - Description of terms -- 7.1.1.1 - Effective stress (σ9) -- 7.1.1.2 - Nq (bearing capacity factor) -- 7.1.1.3 - K (lateral earth pressure coefficient) -- 7.1.1.3.1 - K0:- in situ soil condition -- 7.1.1.3.2 - Ka:- active condition -- 7.1.1.3.3 - Kp:- passive condition -- 7.1.1.3.4 - K: soil near piles -- 7.1.1.4 - tand (wall friction angle) -- 7.1.1.5 - Ap (perimeter surface area of the pile) -- 7.2 - Equations for end bearing capacity in sandy soils -- 7.2.1 - API method (American Petroleum Institute, 1984) -- 7.2.2 - Martin et al. (1987) -- 7.2.3 - NAVFAC DM 7.2 (1984) -- 7.2.4 - Bearing capacity factor (Nq) -- 7.3 - Equations for skin friction in sandy soils -- 7.3.1 - Driven piles -- 7.3.1.1 - McClelland (1974) -- 7.3.1.2 - Meyerhoff (1976) (driven piles) -- 7.3.1.3 - Meyerhoff (1976) (bored piles) -- 7.3.1.4 - Kraft and Lyons (1974) -- 7.3.1.5 - NAVFAC DM 7.2 (1984) -- 7.3.2 - Pile skin friction angle (d) -- 7.3.3 - Lateral earth pressure coefficient (K) -- 7.3.4 - Average K method -- 7.4 - Design examples -- 7.5 - Parameters that affect end bearing capacity -- 7.6 - Critical depth for end bearing capacity (sandy soils) -- 7.7 - Critical depth for skin friction (sandy soils) -- 7.7.1 - Experimental evidence for critical depth -- 7.7.2 - Reasons for limiting skin friction -- References -- 8 - Design of driven piles -- 8.1 - Pile design in sandy soils (dynamic analysis) -- 8.1.1 - Engineering news formula -- 8.1.2 - Design example -- 8.1.3 - Danish formula -- 8.2 - Water jetting -- 8.3 - Driving stresses -- 8.3.1 - Example -- 8.3.2 - Maximum allowable driving stresses -- 8.4 - Pile design in clayey soils -- 8.4.1 - Skin friction and end-bearing resistance -- 8.4.2 - End bearing versus skin friction (typical example) -- 8.4.3 - Case study: foundation design options. , 8.4.3.1 - General soil conditions -- 8.4.3.2 - Foundation option 1 -- 8.4.3.3 - Foundation option 2 -- 8.4.3.4 - Foundation option 3 -- 8.4.3.5 - Foundation option 4 -- 8.4.3.6 - Foundation option 5 -- 8.4.3.7 - Foundation option 6 -- 8.5 - Structural design of piles -- 8.5.1 - Timber pile design -- 8.5.1.1 - Quality of timber piles -- 8.5.1.2 - Knots -- 8.5.1.3 - Holes -- 8.5.1.4 - Preservatives -- 8.5.2 - Piles in marine environments -- 8.5.3 - Allowable stresses in timber -- 8.5.4 - Straightness criteria -- 8.5.5 - Allowable working stress for round timber piles -- 8.5.6 - Timber pile case study: Parakkum building, Colombo, Sri Lanka -- 8.5.6.1 - Static analysis -- 8.5.7 - Case study: bridge pile design (timber piles) -- 8.5.8 - Bridge pile design -- 8.5.8.1 - Soil parameters -- 8.5.8.2 - Earthquake -- 8.6 - Recommended guidelines for pile design -- 8.6.1 - Steel piles -- 8.6.2 - Minimum dimensions for steel pipe piles -- 8.6.3 - Concrete piles -- 8.6.3.1 - Reinforced precast concrete piles -- 8.6.3.2 - Prestressed concrete piles -- 8.6.3.3 - Concrete filled shell piles -- 8.6.3.4 - Augered pressure-grouted concrete piles -- 8.6.3.5 - Maximum driving stress -- 8.7 - Uplift forces -- 8.7.1 - Uplift due to high groundwater -- 8.7.2 - Uplift forces due to wind -- 8.8 - Pile design in expansive soil -- 8.8.1 - Identification of expansive soils -- 8.8.2 - Pile design options -- 8.8.3 - Pile caps -- 8.9 - Open-ended pipe pile design: semiempirical approach -- 8.9.1 - Plug ratio -- 8.9.2 - Incremental filling ratio -- 8.9.2.1 - Measurement of IFR -- 8.9.3 - Correlation between PLR and IFR -- 8.9.4 - End-bearing capacity of open-ended piles in sandy soils -- 8.9.5 - Skin friction of open-ended pipe piles in sandy soils -- 8.9.5.1 - Prediction of plugging -- 8.10 - Case study 1: friction piles -- 8.10.1 - Project description. , 8.10.2 - Soil condition at the site.
    Additional Edition: ISBN 0-12-804202-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages