Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edoccha_9960809457602883
    Format: 1 online resource (XXI, 489 p. 171 illus., 134 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 3-031-08999-5
    Series Statement: Lecture Notes in Computer Science, 12962
    Content: This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book.
    Note: Supervoxel Merging towards Brain Tumor Segmentation -- Challenging Current Semi-Supervised Anomaly Segmentation Methods for Brain MRI -- Modeling multi-annotator uncertainty as multi-class segmentation problem -- Modeling multi-annotator uncertainty as multi-class segmentation problem -- Adaptive unsupervised learning with enhanced feature representation for intra-tumor partitioning and survival prediction for glioblastoma -- Predicting isocitrate dehydrogenase mutation status in glioma using structural brain networks and graph neural networks -- Optimization of Deep Learning based Brain Extraction in MRI for Low Resource Environments. Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task -- Unet3D with Multiple Atrous Convolutions Attention Block for Brain Tumor Segmentation -- BRATS2021: exploring each sequence in multi-modal input for baseline U-net performance -- Automatic Brain Tumor Segmentation using Multi-scale Features and Attention Mechanism -- Simple and Fast Convolutional Neural Network applied to median cross sections for predicting the presence of MGMT promoter methylation in FLAIR MRI scans -- MSViT: Multi Scale Vision Transformer forBiomedical Image Segmentation -- Unsupervised Multimodal -- HarDNet-BTS: A Harmonic Shortcut Network for Brain Tumor Segmentation -- Multimodal Brain Tumor Segmentation Algorithm -- Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images -- Multi-plane UNet++ Ensemble for Glioblastoma Segmentation -- Multimodal Brain Tumor Segmentation using Modified UNet Architecture -- A video data based transfer learning approach for classification of MGMT status in brain tumor MR images -- Multimodal Brain Tumor Segmentation Using a 3D ResUNet in BraTS 2021 -- 3D MRI brain tumour segmentation with autoencoder regularization and Hausdorff distance loss function -- 3D CMM-Net with Deeper Encoder for Semantic Segmentation of Brain Tumors in BraTS2021 Challenge -- Cascaded training pipeline for 3D brain tumor segmentation -- nnU-Net with Region-based Training and Loss Ensembles for Brain Tumor Segmentation -- Brain Tumor Segmentation Using Attention Activated U-Net with Positive Mining -- Automatic segmentation of brain tumor using 3D convolutional neural networks -- Hierarchical and Global Modality Interaction for Brain Tumor Segmentation -- Ensemble Outperforms Single Models in Brain Tumor Segmentation -- Brain Tumor Segmentation using UNet-Context Encoding Network -- Ensemble CNN Networks for GBM Tumors Segmentation using Multi-parametric MRI. , English
    Additional Edition: ISBN 3-031-08998-7
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages