UID:
edocfu_9959245753502883
Format:
1 online resource (643 p.)
Edition:
First edition.
ISBN:
0-12-810115-6
,
0-12-800482-7
Series Statement:
Elsevier Insights
Note:
Bibliographic Level Mode of Issuance: Monograph
,
Front Cover -- Microbial Biodegradation and Bioremediation -- Copyright Page -- Contents -- Preface -- Biography -- List of Contributors -- 1 Microbial Bioremediation: A Potential Tool for Restoration of Contaminated Areas -- 1.1 Introduction -- 1.2 Pollution: A Major Global Problem -- 1.3 Current Remediation Practices -- 1.4 Characteristics of Microorganisms Suitable for Remediation -- 1.5 Adaptation in Extreme Environmental Conditions -- 1.6 Applications of Bacteria for Bioremediation -- 1.6.1 Removal of Heavy Metals -- 1.6.2 Degradation of Polyaromatic Hydrocarbons and Other Recalcitrants -- 1.6.3 Petroleum and Diesel Biodegradation -- 1.6.4 Degradation of Plastic -- 1.7 Factors of Bioremediation -- 1.8 Microbial Bioremediation Strategies -- 1.8.1 In situ Bioremediation -- 1.8.2 Ex situ Bioremediation -- 1.8.3 Bioreactors -- 1.8.4 Alternative Bioremediation Technologies -- 1.8.5 Use of Microbial Consortia for Bioremediation -- 1.8.6 Improvement of the Strains by Genetic Manipulation for Enhanced Bioremediation -- 1.9 Pros and Cons of Using Bacteria in Bioremediation -- 1.10 Conclusion and Future Prospects -- Acknowledgments -- References -- 2 Heavy Metals and Hydrocarbons: Adverse Effects and Mechanism of Toxicity -- 2.1 Introduction -- 2.2 Source of Contaminants in the Environment -- 2.2.1 Natural Sources -- 2.2.2 Anthropogenic Sources -- 2.3 Major Groups of Pollutants -- 2.3.1 Heavy Metals -- 2.3.2 Organic Compounds -- 2.4 The Environmental Fate and Biogeochemical Cycle of Pollutants -- 2.4.1 Biogeochemical Cycle of Heavy Metals -- 2.4.2 Biogeochemical Cycles of PAHs -- 2.5 Effect of Pollutants on the Ecosystem -- 2.5.1 Aquatic Ecosystems -- 2.5.2 Terrestrial Ecosystems -- 2.6 Exposure, Metabolism, and the Fate of Environmental Pollutants in Humans -- 2.6.1 Routes of Exposure and Metabolism of Heavy Metals.
,
2.6.2 Route of Exposure, Metabolism, and Excretion of PAHs -- 2.7 Effects of Heavy Metals and PAHs on Human Health -- 2.7.1 Diseases Caused by Heavy Metals Contamination -- 2.7.2 Diseases Caused by PAH Contamination -- 2.8 Conclusion -- References -- 3 Nanotoxicity: Aspects and Concerns in Biological Systems -- 3.1 Introduction -- 3.1.1 Perspective -- 3.1.2 Nanotechnology and Biological Research -- 3.2 Entry of Nanomaterials into Living Organisms -- 3.2.1 Unintentional Entry of Nanomaterials and Routes of Entry -- 3.2.2 Systematic Administration of Nanomaterials (In Vivo) -- 3.3 Fate of Nanoparticles Inside Living Organisms -- 3.3.1 Accumulation and Biodistribution -- 3.3.2 Clearance -- 3.4 Nanotoxicity, In Vivo Degradation, and Effects -- 3.5 Ecology, Environment, and Nanomaterials -- 3.6 The Microbial World and Engineered Nanomaterials -- 3.6.1 Effect of Nanotoxicity in the Microbial Domain -- 3.6.2 Nanomaterials and Microbial Drug Resistance -- 3.6.3 Biodegradable Nanomaterials and Microbes -- 3.7 Conclusion -- Reference -- 4 Application of Molecular Techniques for the Assessment of Microbial Communities in Contaminated Sites -- 4.1 Introduction -- 4.2 Microbial Community Profiling -- 4.2.1 Clone Libraries and Sequencing -- 4.2.2 Genetic Fingerprinting Techniques -- 4.2.2.1 Denaturing- and Temperature-Gradient Gel Electrophoresis (DGGE/TGGE) -- 4.2.2.2 Amplified Ribosomal DNA Restriction Analysis -- 4.2.2.3 Terminal Restriction Fragment Length Polymorphism -- 4.2.2.4 Length Heterogeneity Polymerase Chain Reaction -- 4.2.2.5 Ribosomal Intergenic Spacer Analysis -- 4.3 Functional Analysis of Microbial Communities -- 4.3.1 Quantitative Polymerase Chain Reaction -- 4.3.2 Microarray Technologies -- 4.3.3 Stable Isotope Probing -- 4.4 Determination of In Situ Abundance of Microorganisms -- 4.4.1 Fluorescence In Situ Hybridization.
,
4.5 Application of "-omics" Technologies -- 4.5.1 Metagenomics -- 4.5.2 Metatranscriptomics -- 4.5.3 Metaproteomics -- 4.6 Conclusion -- References -- 5 Microbial Indicators for Monitoring Pollution and Bioremediation -- 5.1 Introduction -- 5.2 Choosing a Whole Cell Bioreporter -- 5.2.1 Bacterial Luciferase (lux) -- 5.2.1.1 luxAB -- 5.2.1.2 luxCDABE -- 5.2.1.3 Eukaryotic Optimized luxCDABE -- 5.2.2 Firefly Luciferase (luc) -- 5.2.3 Green Fluorescent Protein -- 5.2.4 lacZ -- 5.3 Applying the Bioreporter as a Pollution Monitoring and Bioremediation Tool -- 5.3.1 Keeping the Bioreporters Alive and Healthy -- 5.3.2 Integrating Bioreporter Organisms with Biosensor Devices -- 5.4 Examples of In Situ Field Applications -- 5.5 Field Release of Pseudomonas fluorescens HK44 for Monitoring PAH Bioremediation in Subsurface Soils -- Acknowledgments -- References -- 6 Mercury Pollution and Bioremediation-A Case Study on Biosorption by a Mercury-Resistant Marine Bacterium -- 6.1 Introduction -- 6.2 The Mercury Cycle in the Environment -- 6.3 Health Effects Associated with Mercury Contamination -- 6.4 Mercury-Resistant Bacteria and Mechanisms of Resistance -- 6.4.1 Mer Operon-Mediated Mercury Resistance -- 6.4.2 Regulation of mer Operon -- 6.4.3 Genetic Diversity of mer Genes Within an Operon -- 6.4.4 Tolerance to Mercury by Biosorption -- 6.5 Mercury-Resistant Bacteria in Bioremediation -- 6.6 Bioaccumulating Mercury-Resistant Marine Bacteria as Potential Candidates for Bioremediation of Mercury: Case Study -- 6.6.1 Background Knowledge -- 6.6.2 Experimental Procedures -- 6.6.2.1 Sampling, Isolation, and Selection of Bacteria -- 6.6.2.2 Molecular Identification of the Isolate -- 6.6.2.3 GenBank Submission -- 6.6.2.4 Amplification of merA Gene -- 6.6.2.5 Mercury Biosorption Study -- 6.6.2.6 Biofilm Development -- 6.6.2.7 Modification of Functional Groups.
,
6.6.2.8 Determination of Mercury Removal Potential -- 6.6.2.9 Metal Resistance Pattern -- 6.6.3 Results -- 6.6.3.1 Sampling, Screening, and Molecular Identification of Bacteria -- 6.6.3.2 Amplification of the merA Gene -- 6.6.3.3 Mercury Biosorption Study -- 6.6.3.4 Biofilm Development -- 6.6.3.5 Modification of Functional Groups -- 6.6.3.6 Determination of Mercury Removal Potential -- 6.6.3.7 Metal Tolerance by the Isolate -- 6.7 Discussion -- 6.8 Conclusion -- Acknowledgments -- References -- 7 Biosurfactant-Based Bioremediation of Toxic Metals -- 7.1 Introduction -- 7.2 Microbial Surface-Active Compounds: Biosurfactants -- 7.2.1 Chemistry and Types -- 7.2.1.1 Glycolipids -- 7.2.1.2 Lipopeptides -- 7.2.1.3 Fatty Acids, Phospholipids, and Neutral Lipids -- 7.2.1.4 Polymeric Biosurfactants -- 7.2.1.5 Particulate Biosurfactants -- 7.2.2 Microorganisms Producing Biosurfactants -- 7.3 Biosurfactant-Based Toxic Metal Remediation -- 7.4 Genetic Basis of Biosurfactant Production -- 7.4.1 Surfactin Production -- 7.4.2 Lichenysin Biosurfactant -- 7.4.3 Iturin Lipopeptide -- 7.4.4 Arthrofactin Lipopeptide -- 7.4.5 Rhamnolipid Biosurfactant -- 7.4.6 Viscosin -- 7.4.7 Amphisin -- 7.4.8 Putisolvin -- 7.4.9 Emulsan and Alasan -- 7.4.10 Serrawettin -- 7.4.11 Fungal Surfactants -- 7.5 Application in Metal Remediation -- 7.6 Conclusion -- References -- 8 Biofilm-Mediated Bioremediation of Polycyclic Aromatic Hydrocarbons -- 8.1 Introduction -- 8.2 Environmental Pollutants and Bioremediation -- 8.2.1 Organic Compounds -- 8.2.1.1 Polycyclic Aromatic Hydrocarbons -- 8.2.1.2 Nitro-Aromatic Compounds -- 8.2.1.3 Organo-Chlorine Compounds -- 8.2.1.4 Phthalates -- 8.2.1.5 Azo Dyes -- 8.2.2 Heavy Metals -- 8.2.3 Bioremediation -- 8.3 Bioremediation of PAHs -- 8.3.1 Source and Distribution -- 8.3.2 Toxicity -- 8.3.3 Bacterial Metabolism of PAHs.
,
8.4 Bacterial Biofilms and Bioremediation -- 8.4.1 Biofilms -- 8.4.2 Biofilm Development -- 8.4.3 Biofilm Components -- 8.4.3.1 Exopolysaccharides -- 8.4.3.2 Extracellular Proteins -- 8.4.3.2.1 Enzymes -- 8.4.3.2.2 Structural Proteins -- 8.4.3.3 Extracellular DNA -- 8.4.3.4 Lipids and Biosurfactants -- 8.4.4 Physiological State of Cells in a Biofilm -- 8.4.5 Quorum Sensing -- 8.5 Application of Biofilms in Bioremediation Technology -- 8.5.1 Biofilms for PAH Remediation -- 8.5.2 Factors Influencing the Bioremediation of PAHs -- 8.5.2.1 Bioavailability -- 8.5.2.2 Temperature -- 8.5.2.3 pH -- 8.5.2.4 Oxygen -- 8.5.2.5 Cell-Cell Signaling -- 8.5.2.6 Chemotaxis -- 8.5.2.7 Horizontal Gene Transfer -- 8.5.3 Bioremediation Strategies for PAHs Degradation -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Nanoremediation: A New and Emerging Technology for the Removal of Toxic Contaminant from Environment -- 9.1 Introduction -- 9.2 Different Kinds of Remediation -- 9.2.1 Physical Remediation -- 9.2.1.1 Soil Washing -- 9.2.1.2 Soil Vapor Extraction -- 9.2.1.3 Land-Farming -- 9.2.1.4 Soil Flushing -- 9.2.2 Chemical Remediation -- 9.2.3 Biological Remediation -- 9.2.3.1 Microbial Remediation -- 9.2.3.2 Phytoremediation -- 9.3 Limitations of Traditional Remediation Methods -- 9.4 Nanoremediation: An Alternative for Traditional Remediation Processes -- 9.5 Conclusion -- References -- 10 Bioremediation Using Extremophiles -- 10.1 Bioremediation Using Extremophiles -- 10.2 Identifying Extremophiles for Remediation Applications -- 10.2.1 Extremes of Temperature -- 10.2.2 Extremes of pH -- 10.2.3 Extremes of Radiation -- 10.2.4 Extremes of Salinity -- 10.2.5 Extreme Concentration of Hydrocarbons -- 10.2.6 Extremes of Pressure -- 10.3 Enzyme Catalysis for Remediation -- 10.4 Whole-Cell Catalysis for Remediation Under Extreme Conditions.
,
10.4.1 Temperature, Pressure, and Whole-Cell Bioremediation.
,
English
Additional Edition:
ISBN 0-12-800021-X
Additional Edition:
ISBN 1-306-93008-1
Language:
English