Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    edocfu_9960161364602883
    Format: 1 online resource (682 pages)
    ISBN: 0-12-813023-7 , 0-12-813022-9
    Note: Front Cover -- Practical Onshore Gas Field Engineering -- Copyright Page -- Contents -- Preface -- 0. Introduction -- 0.1 Background -- 0.2 Fluid Terminology -- 0.3 Oilfield Units -- 0.3.1 Unit Conversions -- 0.3.2 gc -- 0.4 Reservoir Fluids -- 0.5 Liquids -- 0.5.1 Liquid Specific Gravity -- 0.5.2 API Gravity -- 0.5.3 Barrel of Oil -- 0.5.4 Liquid Hydrostatic Pressure -- 0.5.5 Hydrostatic Gradient -- 0.5.6 Liquid Compressibility -- 0.6 Gas -- 0.6.1 Gas Equation of State -- 0.6.2 Gas Specific Gravity -- 0.6.3 Gas Compressibility -- 0.6.4 Gas Gradient -- 0.6.5 Gas Density and Atmospheric Pressure -- 0.6.6 Fluid Characteristics -- 0.6.6.1 Selected Properties -- 0.6.6.2 Adiabatic Constant -- 0.6.6.3 Gas Mixtures -- 0.6.6.4 Including Water Vapor -- 0.6.6.5 Inherent Energy -- 0.6.6.6 Energy Equivalents -- 0.6.6.7 C6 Plus -- 0.6.6.8 Examples of Gas Types -- 0.7 Topics in Fluid Mechanics -- 0.7.1 Statics -- 0.7.1.1 Buoyancy -- 0.7.2 Dynamics -- 0.7.2.1 Navier-Stokes Equation -- 0.7.2.2 Bernoulli Equation -- 0.7.2.3 No-Flow Boundary -- 0.7.2.4 Similitude -- 0.7.3 Pressure and Temperature Measurement -- 0.7.4 Total Pressure -- 0.7.5 Pressure Continuum -- 0.8 Standard Conditions -- 0.9 Empirical Equations -- References -- Nomenclature -- Units -- Exercises -- 1. Gas Reservoirs -- 1.1 Source of Hydrocarbons -- 1.1.1 Recoverable hydrocarbons explained -- 1.1.2 Biotic hydrocarbons -- 1.1.3 Abiotic hydrocarbons -- 1.1.4 Do abiotic hydrocarbons matter to the oil & gas industry? -- 1.2 Reservoir Rocks -- 1.2.1 Porosity -- 1.2.2 Permeability -- 1.2.3 Hydrocarbon traps -- 1.2.3.1 Anticline -- 1.2.3.2 Fault -- 1.2.3.3 Salt Dome -- 1.3 Reservoir Concepts -- 1.3.1 Reservoir temperature -- 1.3.2 Reservoir pressure -- 1.3.3 Original gas in place -- 1.3.4 Reservoir pressure versus gas in place overview -- 1.4 Primary Gas-Field Distinctions -- 1.5 Conventional Gas Fields. , 1.5.1 Reservoir pressure versus OGIP conventional -- 1.5.2 Conventional gas -- 1.5.3 Conventional reservoir materials -- 1.6 Unconventional Fields -- 1.6.1 Tight gas -- 1.6.2 Coalbed methane -- 1.6.3 Shale -- 1.7 Reservoir Development -- 1.7.1 Types of resources -- 1.8 Conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 2. Well-Bore Construction (Drilling and Completions) -- 2.1 Drilling Environments -- 2.1.1 Onshore -- 2.1.2 Offshore -- 2.1.2.1 Fixed platform -- 2.1.2.2 Jack-up rigs -- 2.1.2.3 Semi-submersible rigs -- 2.1.2.4 Drillships -- 2.2 Rig Components -- 2.2.1 Power systems -- 2.2.2 Lifting Systems -- 2.2.3 Rotating systems -- 2.2.3.1 Rotating from surface -- 2.2.3.2 Rotating in directional holes -- 2.2.4 Drill string -- 2.2.5 Circulation systems -- 2.2.5.1 Drilling fluids -- 2.2.5.2 Pressure control -- 2.3 Hole Topology -- 2.4 Well-Bore Tubulars -- 2.4.1 Casing/Liners -- 2.4.1.1 Casing design -- 2.4.1.2 Cellar -- 2.4.1.3 Conductor pipe -- 2.4.1.4 Surface casing -- 2.4.1.5 Intermediate casing -- 2.4.1.6 Production casing -- 2.4.1.7 Liners -- 2.4.1.8 Wellhead -- 2.4.1.9 Tubing -- 2.5 Cementing -- 2.5.1 Mixing -- 2.5.2 Placing cement -- 2.5.2.1 Primary cementing -- 2.5.2.2 Remedial cementing -- 2.5.2.3 Liner cementing -- 2.5.3 Cement evaluation -- 2.5.3.1 Pressure test -- 2.5.3.2 Temperature log -- 2.5.3.3 Radioactive log -- 2.5.3.4 Cement bond log -- 2.5.4 Drilling wrap-up -- 2.6 Logging -- 2.6.1 Electrical -- 2.6.1.1 Caliper -- 2.6.1.2 Acoustic (Sonic) -- 2.6.1.3 Spontaneous potential -- 2.6.1.4 Resistivity -- 2.6.2 Nuclear -- 2.6.3 Logging while drilling -- 2.6.4 Production logging tools -- 2.7 Production Completions -- 2.7.1 Tubing -- 2.7.1.1 Stick tubing -- 2.7.1.2 Coiled tubing -- 2.7.2 Completion options -- 2.7.2.1 Open-hole completions -- 2.7.2.2 Uncemented liner completions -- 2.7.2.3 Cemented casing completions. , 2.7.3 Perforating -- 2.7.3.1 Gun types -- 2.7.3.2 Conveyance methods -- 2.8 Stimulations -- 2.8.1 Hydraulic fracture stimulation -- 2.8.2 Open-hole cavitation -- 2.8.3 Mississippi clean-out -- 2.9 Conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 3. Well Dynamics -- 3.1 Role of Surface Pressure in Well Performance -- 3.1.1 Pressure consistency -- 3.1.2 Water vapor -- 3.1.3 Evaporation -- 3.1.4 Phase-change scale -- 3.1.5 Hydrates -- 3.2 Predicting Flow Rates -- 3.2.1 Bureau of mines method -- 3.2.2 Inflow performance relationship -- 3.2.3 Decline curve analysis -- 3.2.4 CBM method -- 3.3 Fluid Levels -- 3.3.1 Tubing vs casing pressure -- 3.3.2 Sonic fluid shots -- 3.4 Vertical Multiphase Flow -- 3.4.1 Flowing gas gradient -- 3.4.2 Tubing flow vs casing flow -- 3.4.3 Annular flow in pumping wells -- 3.5 Gas Well Deliquification -- 3.5.1 Gas well life cycle -- 3.5.2 Deliquification using reservoir energy -- 3.5.2.1 Critical flow -- 3.5.2.2 Velocity string -- 3.5.2.3 Tubing flow controller -- 3.5.2.4 Plungers -- 3.5.2.5 Surfactants -- 3.5.2.6 Intermitting -- 3.5.2.7 Vent cycles -- 3.5.3 Deliquification with added energy -- 3.5.3.1 Pumping considerations -- 3.5.3.2 Surface compression -- 3.5.3.3 Evaporation as deliquification -- 3.5.3.4 Pump-off control -- 3.5.3.5 Sucker rod pumps -- 3.5.3.6 Progressing cavity pumps -- 3.5.3.7 Electric submersible pump -- 3.5.3.8 Downhole jet pump -- 3.5.3.9 Gas lift -- 3.5.4 Evolving requirements -- 3.5.4.1 Horizontal wells -- 3.5.4.2 Interconnected series of wells -- 3.5.4.3 Slim-hole wells -- 3.5.4.4 Multiwell pads -- 3.5.4.5 Emerging technologies -- 3.5.5 Deliquification conclusion -- References -- Nomenclature -- Exercises -- 4. Surface Engineering Concepts -- 4.1 Fluid Friction -- 4.1.1 Viscosity -- 4.1.1.1 Dynamic viscosity (μ) -- 4.1.1.2 Kinematic viscosity (ν=μ/ρ). , 4.1.2 Reynolds number -- 4.1.3 Absolute pipe roughness (ε) -- 4.1.4 Friction factor -- 4.1.4.1 Moody (D'Arcy) friction factor -- 4.1.4.2 Fanning friction factor -- 4.1.4.3 Average pressure -- 4.2 Liquid Flow -- 4.2.1 D'Arcy-Weisbach equation -- 4.2.2 Full-pipe determination -- 4.2.3 Pumping HP -- 4.3 Gas Flow -- 4.3.1 Compressible flow -- 4.3.1.1 Sonic velocity and choked flow -- 4.3.1.2 Pipeline blowdown example -- 4.3.1.3 Dynamic pressure during compressible flow -- 4.3.1.4 Compressible versus incompressible flow -- 4.3.2 Isothermal single-phase incompressible gas flow -- 4.3.2.1 Assumptions in the derivation -- 4.3.2.2 Useful restructures of isothermal gas flow equation -- 4.3.2.3 Example of isothermal gas flow -- 4.3.3 Closed-form equations -- 4.3.3.1 AGA fully turbulent -- 4.3.3.2 Weymouth -- 4.3.3.3 Panhandle A -- 4.3.3.4 Oliphant -- 4.3.3.5 Spitzglass -- 4.3.3.6 Comparison of closed-form solutions -- 4.3.4 Multiphase flow -- 4.3.4.1 Calculations with horizontal multiphase flow -- 4.3.4.1.1 Duckler Method -- 4.3.4.1.2 Flannigan method -- 4.4 Corrosion -- 4.4.1 Erosion -- 4.4.2 Common corrosion modalities -- 4.4.2.1 Microbiologically influenced corrosion -- 4.4.2.2 CO2 corrosion -- 4.4.2.3 H2S -- 4.4.2.4 Oxygen corrosion -- 4.4.2.5 External galvanic corrosion -- 4.4.3 Corrosion control -- 4.4.3.1 External -- 4.4.3.2 Internal -- 4.4.4 Flow through a hole -- 4.4.5 Corrosion prediction -- 4.4.6 Corrosion summary -- 4.5 Purging Air From Gas Lines -- 4.5.1 Dilution purges -- 4.5.2 Displacement purges -- 4.5.3 Clearing purge -- 4.5.4 Determining purge pressure and required time -- 4.5.5 Purge conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 5. Well-Site Equipment -- 5.1 Introduction -- 5.2 Piping Design Code -- 5.2.1 Pipe wall thickness -- 5.2.2 Pipe wall thickness example -- 5.3 Piping Selection -- 5.4 Production Vessels. , 5.4.1 Vessel design code -- 5.4.2 Separator selection -- 5.4.3 Separator sizing -- 5.4.3.1 Shell sizing -- 5.4.3.2 Nozzle sizing -- 5.4.3.3 Mist extractor -- 5.4.4 Typical designs -- 5.4.4.1 High-low producer -- 5.4.4.2 Horizontal -- 5.4.4.3 Vertical -- 5.4.4.4 Heated vs nonheated -- 5.4.4.5 Blow case -- 5.4.5 Wells with downhole pumps -- 5.4.6 Liquid-storage vessels -- 5.4.7 Vapor recovery units -- 5.5 Pressure Safety Devices -- 5.5.1 Credible scenarios -- 5.5.2 Double jeopardy -- 5.5.3 Set points -- 5.5.4 Devices -- 5.5.4.1 Rupture disk -- 5.5.4.2 Conventional PSV -- 5.5.4.3 Pilot-operated PSV -- 5.5.4.4 Tank pressure/vacuum vent -- 5.5.5 Flow rate determination -- 5.5.5.1 Rate calculation -- 5.5.5.2 Exhaust forces -- 5.6 Well-Site Process Control -- 5.6.1 Pneumatic control -- 5.6.1.1 Source gas -- 5.6.1.2 Controller/sensing element -- 5.6.1.3 End devices -- 5.7 Fluid Measurement -- 5.7.1 Key concepts -- 5.7.2 Makeup of a flow measurement system -- 5.7.3 Water measurement -- 5.7.3.1 Turbine meter -- 5.7.3.2 Vortex meter -- 5.7.3.3 Mag flow meter -- 5.7.3.4 Coriolis meter -- 5.7.3.5 Ultrasonic meter -- 5.7.3.6 Blow case dump counter -- 5.7.4 Gas measurement -- 5.7.4.1 Square-edged orifice meter -- 5.7.4.2 V-cone -- 5.7.4.3 Other measurement technologies -- 5.8 Well-Site Equipment Spacing -- 5.9 Control Rooms -- 5.10 Processes vs Decisions -- References -- Nomenclature -- Exercises -- 6. Gas Gathering Systems -- 6.1 Overview -- 6.2 Project Life Cycle -- 6.2.1 Planning phase -- 6.2.2 EPC phase -- 6.2.3 Operations phase -- 6.2.4 Cost estimating -- 6.3 Gathering Equipment Selection (FEED) -- 6.3.1 Design standards -- 6.3.2 Pipe selection -- 6.3.2.1 Size selection -- 6.3.2.2 Material selection -- 6.3.2.2.1 Steel pipe wall thickness example -- 6.3.2.3 Pipe summary -- 6.3.3 Ditch -- 6.3.3.1 Open ditch -- 6.3.3.2 Plowed-in -- 6.3.4 Pipeline obstructions. , 6.3.5 Liquid in gas gathering systems.
    Additional Edition: ebook version : ISBN 9780128130230
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages