Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

The response time in the portal may currently be longer than usual. We apologise for this.
Export
  • 1
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    edocfu_9960161364602883
    Format: 1 online resource (682 pages)
    ISBN: 0-12-813023-7 , 0-12-813022-9
    Note: Front Cover -- Practical Onshore Gas Field Engineering -- Copyright Page -- Contents -- Preface -- 0. Introduction -- 0.1 Background -- 0.2 Fluid Terminology -- 0.3 Oilfield Units -- 0.3.1 Unit Conversions -- 0.3.2 gc -- 0.4 Reservoir Fluids -- 0.5 Liquids -- 0.5.1 Liquid Specific Gravity -- 0.5.2 API Gravity -- 0.5.3 Barrel of Oil -- 0.5.4 Liquid Hydrostatic Pressure -- 0.5.5 Hydrostatic Gradient -- 0.5.6 Liquid Compressibility -- 0.6 Gas -- 0.6.1 Gas Equation of State -- 0.6.2 Gas Specific Gravity -- 0.6.3 Gas Compressibility -- 0.6.4 Gas Gradient -- 0.6.5 Gas Density and Atmospheric Pressure -- 0.6.6 Fluid Characteristics -- 0.6.6.1 Selected Properties -- 0.6.6.2 Adiabatic Constant -- 0.6.6.3 Gas Mixtures -- 0.6.6.4 Including Water Vapor -- 0.6.6.5 Inherent Energy -- 0.6.6.6 Energy Equivalents -- 0.6.6.7 C6 Plus -- 0.6.6.8 Examples of Gas Types -- 0.7 Topics in Fluid Mechanics -- 0.7.1 Statics -- 0.7.1.1 Buoyancy -- 0.7.2 Dynamics -- 0.7.2.1 Navier-Stokes Equation -- 0.7.2.2 Bernoulli Equation -- 0.7.2.3 No-Flow Boundary -- 0.7.2.4 Similitude -- 0.7.3 Pressure and Temperature Measurement -- 0.7.4 Total Pressure -- 0.7.5 Pressure Continuum -- 0.8 Standard Conditions -- 0.9 Empirical Equations -- References -- Nomenclature -- Units -- Exercises -- 1. Gas Reservoirs -- 1.1 Source of Hydrocarbons -- 1.1.1 Recoverable hydrocarbons explained -- 1.1.2 Biotic hydrocarbons -- 1.1.3 Abiotic hydrocarbons -- 1.1.4 Do abiotic hydrocarbons matter to the oil & gas industry? -- 1.2 Reservoir Rocks -- 1.2.1 Porosity -- 1.2.2 Permeability -- 1.2.3 Hydrocarbon traps -- 1.2.3.1 Anticline -- 1.2.3.2 Fault -- 1.2.3.3 Salt Dome -- 1.3 Reservoir Concepts -- 1.3.1 Reservoir temperature -- 1.3.2 Reservoir pressure -- 1.3.3 Original gas in place -- 1.3.4 Reservoir pressure versus gas in place overview -- 1.4 Primary Gas-Field Distinctions -- 1.5 Conventional Gas Fields. , 1.5.1 Reservoir pressure versus OGIP conventional -- 1.5.2 Conventional gas -- 1.5.3 Conventional reservoir materials -- 1.6 Unconventional Fields -- 1.6.1 Tight gas -- 1.6.2 Coalbed methane -- 1.6.3 Shale -- 1.7 Reservoir Development -- 1.7.1 Types of resources -- 1.8 Conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 2. Well-Bore Construction (Drilling and Completions) -- 2.1 Drilling Environments -- 2.1.1 Onshore -- 2.1.2 Offshore -- 2.1.2.1 Fixed platform -- 2.1.2.2 Jack-up rigs -- 2.1.2.3 Semi-submersible rigs -- 2.1.2.4 Drillships -- 2.2 Rig Components -- 2.2.1 Power systems -- 2.2.2 Lifting Systems -- 2.2.3 Rotating systems -- 2.2.3.1 Rotating from surface -- 2.2.3.2 Rotating in directional holes -- 2.2.4 Drill string -- 2.2.5 Circulation systems -- 2.2.5.1 Drilling fluids -- 2.2.5.2 Pressure control -- 2.3 Hole Topology -- 2.4 Well-Bore Tubulars -- 2.4.1 Casing/Liners -- 2.4.1.1 Casing design -- 2.4.1.2 Cellar -- 2.4.1.3 Conductor pipe -- 2.4.1.4 Surface casing -- 2.4.1.5 Intermediate casing -- 2.4.1.6 Production casing -- 2.4.1.7 Liners -- 2.4.1.8 Wellhead -- 2.4.1.9 Tubing -- 2.5 Cementing -- 2.5.1 Mixing -- 2.5.2 Placing cement -- 2.5.2.1 Primary cementing -- 2.5.2.2 Remedial cementing -- 2.5.2.3 Liner cementing -- 2.5.3 Cement evaluation -- 2.5.3.1 Pressure test -- 2.5.3.2 Temperature log -- 2.5.3.3 Radioactive log -- 2.5.3.4 Cement bond log -- 2.5.4 Drilling wrap-up -- 2.6 Logging -- 2.6.1 Electrical -- 2.6.1.1 Caliper -- 2.6.1.2 Acoustic (Sonic) -- 2.6.1.3 Spontaneous potential -- 2.6.1.4 Resistivity -- 2.6.2 Nuclear -- 2.6.3 Logging while drilling -- 2.6.4 Production logging tools -- 2.7 Production Completions -- 2.7.1 Tubing -- 2.7.1.1 Stick tubing -- 2.7.1.2 Coiled tubing -- 2.7.2 Completion options -- 2.7.2.1 Open-hole completions -- 2.7.2.2 Uncemented liner completions -- 2.7.2.3 Cemented casing completions. , 2.7.3 Perforating -- 2.7.3.1 Gun types -- 2.7.3.2 Conveyance methods -- 2.8 Stimulations -- 2.8.1 Hydraulic fracture stimulation -- 2.8.2 Open-hole cavitation -- 2.8.3 Mississippi clean-out -- 2.9 Conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 3. Well Dynamics -- 3.1 Role of Surface Pressure in Well Performance -- 3.1.1 Pressure consistency -- 3.1.2 Water vapor -- 3.1.3 Evaporation -- 3.1.4 Phase-change scale -- 3.1.5 Hydrates -- 3.2 Predicting Flow Rates -- 3.2.1 Bureau of mines method -- 3.2.2 Inflow performance relationship -- 3.2.3 Decline curve analysis -- 3.2.4 CBM method -- 3.3 Fluid Levels -- 3.3.1 Tubing vs casing pressure -- 3.3.2 Sonic fluid shots -- 3.4 Vertical Multiphase Flow -- 3.4.1 Flowing gas gradient -- 3.4.2 Tubing flow vs casing flow -- 3.4.3 Annular flow in pumping wells -- 3.5 Gas Well Deliquification -- 3.5.1 Gas well life cycle -- 3.5.2 Deliquification using reservoir energy -- 3.5.2.1 Critical flow -- 3.5.2.2 Velocity string -- 3.5.2.3 Tubing flow controller -- 3.5.2.4 Plungers -- 3.5.2.5 Surfactants -- 3.5.2.6 Intermitting -- 3.5.2.7 Vent cycles -- 3.5.3 Deliquification with added energy -- 3.5.3.1 Pumping considerations -- 3.5.3.2 Surface compression -- 3.5.3.3 Evaporation as deliquification -- 3.5.3.4 Pump-off control -- 3.5.3.5 Sucker rod pumps -- 3.5.3.6 Progressing cavity pumps -- 3.5.3.7 Electric submersible pump -- 3.5.3.8 Downhole jet pump -- 3.5.3.9 Gas lift -- 3.5.4 Evolving requirements -- 3.5.4.1 Horizontal wells -- 3.5.4.2 Interconnected series of wells -- 3.5.4.3 Slim-hole wells -- 3.5.4.4 Multiwell pads -- 3.5.4.5 Emerging technologies -- 3.5.5 Deliquification conclusion -- References -- Nomenclature -- Exercises -- 4. Surface Engineering Concepts -- 4.1 Fluid Friction -- 4.1.1 Viscosity -- 4.1.1.1 Dynamic viscosity (μ) -- 4.1.1.2 Kinematic viscosity (ν=μ/ρ). , 4.1.2 Reynolds number -- 4.1.3 Absolute pipe roughness (ε) -- 4.1.4 Friction factor -- 4.1.4.1 Moody (D'Arcy) friction factor -- 4.1.4.2 Fanning friction factor -- 4.1.4.3 Average pressure -- 4.2 Liquid Flow -- 4.2.1 D'Arcy-Weisbach equation -- 4.2.2 Full-pipe determination -- 4.2.3 Pumping HP -- 4.3 Gas Flow -- 4.3.1 Compressible flow -- 4.3.1.1 Sonic velocity and choked flow -- 4.3.1.2 Pipeline blowdown example -- 4.3.1.3 Dynamic pressure during compressible flow -- 4.3.1.4 Compressible versus incompressible flow -- 4.3.2 Isothermal single-phase incompressible gas flow -- 4.3.2.1 Assumptions in the derivation -- 4.3.2.2 Useful restructures of isothermal gas flow equation -- 4.3.2.3 Example of isothermal gas flow -- 4.3.3 Closed-form equations -- 4.3.3.1 AGA fully turbulent -- 4.3.3.2 Weymouth -- 4.3.3.3 Panhandle A -- 4.3.3.4 Oliphant -- 4.3.3.5 Spitzglass -- 4.3.3.6 Comparison of closed-form solutions -- 4.3.4 Multiphase flow -- 4.3.4.1 Calculations with horizontal multiphase flow -- 4.3.4.1.1 Duckler Method -- 4.3.4.1.2 Flannigan method -- 4.4 Corrosion -- 4.4.1 Erosion -- 4.4.2 Common corrosion modalities -- 4.4.2.1 Microbiologically influenced corrosion -- 4.4.2.2 CO2 corrosion -- 4.4.2.3 H2S -- 4.4.2.4 Oxygen corrosion -- 4.4.2.5 External galvanic corrosion -- 4.4.3 Corrosion control -- 4.4.3.1 External -- 4.4.3.2 Internal -- 4.4.4 Flow through a hole -- 4.4.5 Corrosion prediction -- 4.4.6 Corrosion summary -- 4.5 Purging Air From Gas Lines -- 4.5.1 Dilution purges -- 4.5.2 Displacement purges -- 4.5.3 Clearing purge -- 4.5.4 Determining purge pressure and required time -- 4.5.5 Purge conclusion -- References -- Further Reading -- Nomenclature -- Exercises -- 5. Well-Site Equipment -- 5.1 Introduction -- 5.2 Piping Design Code -- 5.2.1 Pipe wall thickness -- 5.2.2 Pipe wall thickness example -- 5.3 Piping Selection -- 5.4 Production Vessels. , 5.4.1 Vessel design code -- 5.4.2 Separator selection -- 5.4.3 Separator sizing -- 5.4.3.1 Shell sizing -- 5.4.3.2 Nozzle sizing -- 5.4.3.3 Mist extractor -- 5.4.4 Typical designs -- 5.4.4.1 High-low producer -- 5.4.4.2 Horizontal -- 5.4.4.3 Vertical -- 5.4.4.4 Heated vs nonheated -- 5.4.4.5 Blow case -- 5.4.5 Wells with downhole pumps -- 5.4.6 Liquid-storage vessels -- 5.4.7 Vapor recovery units -- 5.5 Pressure Safety Devices -- 5.5.1 Credible scenarios -- 5.5.2 Double jeopardy -- 5.5.3 Set points -- 5.5.4 Devices -- 5.5.4.1 Rupture disk -- 5.5.4.2 Conventional PSV -- 5.5.4.3 Pilot-operated PSV -- 5.5.4.4 Tank pressure/vacuum vent -- 5.5.5 Flow rate determination -- 5.5.5.1 Rate calculation -- 5.5.5.2 Exhaust forces -- 5.6 Well-Site Process Control -- 5.6.1 Pneumatic control -- 5.6.1.1 Source gas -- 5.6.1.2 Controller/sensing element -- 5.6.1.3 End devices -- 5.7 Fluid Measurement -- 5.7.1 Key concepts -- 5.7.2 Makeup of a flow measurement system -- 5.7.3 Water measurement -- 5.7.3.1 Turbine meter -- 5.7.3.2 Vortex meter -- 5.7.3.3 Mag flow meter -- 5.7.3.4 Coriolis meter -- 5.7.3.5 Ultrasonic meter -- 5.7.3.6 Blow case dump counter -- 5.7.4 Gas measurement -- 5.7.4.1 Square-edged orifice meter -- 5.7.4.2 V-cone -- 5.7.4.3 Other measurement technologies -- 5.8 Well-Site Equipment Spacing -- 5.9 Control Rooms -- 5.10 Processes vs Decisions -- References -- Nomenclature -- Exercises -- 6. Gas Gathering Systems -- 6.1 Overview -- 6.2 Project Life Cycle -- 6.2.1 Planning phase -- 6.2.2 EPC phase -- 6.2.3 Operations phase -- 6.2.4 Cost estimating -- 6.3 Gathering Equipment Selection (FEED) -- 6.3.1 Design standards -- 6.3.2 Pipe selection -- 6.3.2.1 Size selection -- 6.3.2.2 Material selection -- 6.3.2.2.1 Steel pipe wall thickness example -- 6.3.2.3 Pipe summary -- 6.3.3 Ditch -- 6.3.3.1 Open ditch -- 6.3.3.2 Plowed-in -- 6.3.4 Pipeline obstructions. , 6.3.5 Liquid in gas gathering systems.
    Additional Edition: ebook version : ISBN 9780128130230
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages