UID:
almafu_9959328222602883
Format:
1 online resource
ISBN:
9781118702239
,
1118702239
,
9781118702222
,
1118702220
,
9781118702215
,
1118702212
,
1118702204
,
9781118702208
Content:
Soft-switching PWM full-bridge converters have been widely used in medium-to-high power dc-dc conversions for topological simplicity, easy control and high efficiency. Early works on soft-switching PWM full-bridge converter by many researchers included various topologies and modulation strategies. However, these works were scattered, and the relationship among these topologies and modulation strategies had not been revealed. This book intends to describe systematically the soft-switching techniques for pulse-width modulation (PWM) full-bridge converters, including the topologies, control a.
Note:
1.4.4. Basic Operating Principle of a Full-Bridge Converter with a Current-Doubler Rectifier Circuit -- 1.5. Summary -- References -- 2.1. PWM Strategies for Full-Bridge Converters -- 2.1.1. Basic PWM Strategy -- 2.1.2. Definition of On-Time of Power Switches -- 2.1.3.A Family of PWM Strategies -- 2.2. Two Types of PWM Strategy -- 2.2.1. The Two Diagonal Power Switches Turn Off Simultaneously -- 2.2.2. The Two Diagonal Power Switches Turn Off in a Staggered Manner -- 2.3. Classification of Soft-Switching PWM Full-Bridge Converters -- 2.4. Summary -- Reference -- 3.1. Topologies and Modulation Strategies of ZVS PWM Full-Bridge Converters -- 3.1.1. Modulation of the Lagging Leg -- 3.1.2. Modulation of the Leading Leg -- 3.1.3. Modulation Strategies of the ZVS PWM Full-Bridge Converters -- 3.2. Operating Principle of ZVS PWM Full-Bridge Converter -- 3.3. ZVS Achievement of Leading and Lagging Legs -- 3.3.1. Condition for Achieving ZVS.
,
3.3.2. Condition for Achieving ZVS for the Leading Leg -- 3.3.3. Condition for Achieving ZVS for the Lagging Leg -- 3.4. Secondary Duty Cycle Loss -- 3.5.Commutation of the Rectifier Diodes -- 3.5.1. Full-Bridge Rectifier -- 3.5.2. Full-Wave Rectifier -- 3.6. Simplified Design Procedure and Example -- 3.6.1. Turn Ratio of Transformer -- 3.6.2. Resonant Inductor -- 3.6.3. Output Filter Inductor and Capacitor -- 3.6.4. Power Devices -- 3.6.5. Load Range of ZVS -- 3.7. Experimental Verification -- 3.8. Summary -- References -- 4.1. Current-Enhancement Principle -- 4.2. Auxiliary-Current-Source Network -- 4.3. Operating Principle of a ZVS PWM Full-Bridge Converter with Auxiliary-Current-Source Network -- 4.4. Conditions for Achieving ZVS in the Lagging Leg -- 4.5. Parameter Design -- 4.5.1. Parameter Selection for the Auxiliary-Current-Source Network -- 4.5.2. Determination of Lr, Cr, and Ic -- 4.5.3. Design Example.
,
4.6. Secondary Duty Cycle Loss and Selection of Dead Time for the Drive Signals of the Lagging Leg -- 4.6.1. Secondary Duty Cycle Loss -- 4.6.2. Selection of Dead Time between Drive Signals of the Lagging Leg -- 4.6.3.Comparison with Full-Bridge Converter with Saturable Inductor -- 4.7. Experimental Verification -- 4.8. Other Auxiliary-Current-Source Networks for ZVS PWM Full-Bridge Converters -- 4.8.1. Auxiliary-Current-Source Networks with Uncontrolled Auxiliary Current Magnitude -- 4.8.2. Auxiliary-Current-Source Networks with Controlled Auxiliary Current Magnitude -- 4.8.3. Auxiliary-Current-Source Network with Auxiliary Current Magnitude Proportional to Primary Duty Cycle -- 4.8.4. Auxiliary-Current-Source Network with Auxiliary Current Magnitude Adaptive to Load Current -- 4.8.5. Auxiliary-Current-Source Networks with Adaptive Resonant Inductor Current -- 4.9. Summary -- References.
,
5.1. Modulation Strategies and Topologies of a ZVZCS PWM Full-Bridge Converter -- 5.1.1. Modulation of the Leading Leg -- 5.1.2. Modulation of the Lagging Leg -- 5.1.3. Modulation Strategies of ZVZCS PWM Full-Bridge Converters -- 5.1.4. Method for Resetting the Primary Current at Zero State -- 5.2. Operating Principle of a ZVZCS PWM Full-Bridge Converter -- 5.3. Theoretical Analysis -- 5.3.1. Peak Voltage of the Block Capacitor -- 5.3.2. Achieving ZVS for the Leading Leg -- 5.3.3. Maximum Effective Duty Cycle -- 5.3.4. Achieving ZCS for the Lagging Leg -- 5.3.5. Voltage Stress of the Lagging Leg -- 5.3.6. Blocking Capacitor -- 5.4. Simplified Design Procedure and Example -- 5.4.1. Transformer Winding-Turns Ratio -- 5.4.2. Calculation of Blocking Capacitance -- 5.4.3. Verification of the Transformer Turns Ratio and Blocking Capacitance -- 5.4.4. Dead Time between the Gate Drive Signals of the Leading Leg -- 5.5. Experimental Verification -- 5.6. Summary -- References.
,
6.1. Introduction -- 6.2. Causes of Voltage Oscillation in the Output Rectifier Diode in ZVS PWM Full-Bridge Converters -- 6.3. Voltage Oscillation Suppression Approaches -- 6.3.1. RC Snubber -- 6.3.2. RCD Snubber -- 6.3.3. Active Clamp Circuit -- 6.3.4. Auxiliary Winding of Transformer and Clamping Diode Circuit -- 6.3.5. Clamping Diode Circuit -- 6.4. Operating Principle of the Tr-Lead-Type ZVS PWM Full-Bridge Converter -- 6.5. Operating Principle of the Tr-Lag-Type ZVS PWM Full-Bridge Converter -- 6.6.Comparisons of Tr-Lead-Type and Tr-Lag-Type ZVS PWM Full-Bridge Converters -- 6.6.1. Clamping Diode Conduction Times -- 6.6.2. Achievement of ZVS -- 6.6.3. Conduction Loss in Zero State -- 6.6.4. Duty Cycle Loss -- 6.6.5. Effect of the Blocking Capacitor -- 6.7. Experimental Verification -- 6.8. Summary -- References -- 7.1. Introduction -- 7.2. Operating Principle of the ZVS PWM Full-Bridge Converter with Clamping Diodes under Light Load Conditions.
,
7.2.1. Case I: 0.5Vin/Zr1 〈ILf(t1)/K 〈Vin/Zr1 (Referring to Figure 7.2a) -- 7.2.2. Case II: ILf/(t1)/K 〈0.5Vin/4r1 (Referring to Figure 7.2b) -- 7.3. Clamping Diode Current-Reset Scheme -- 7.3.1. Reset Voltage Source -- 7.3.2. Implementation of the Reset Voltage Source -- 7.4. Operating Principle of the ZVS PWM Full-Bridge Converter with Current Transformer -- 7.4.1. Operating Principle under Heavy Load Conditions -- 7.4.2. Operating Principle under Light Load Conditions -- 7.5. Choice of Current Transformer Winding-Turns Ratio -- 7.5.1. Clamping Diode Current-Reset Time -- 7.5.2. Output Rectifier Diode Voltage Stress -- 7.5.3. Current Transformer Winding-Turns Ratio -- 7.6. Experimental Verification -- 7.7. Summary -- References -- 8.1. Operating Principle -- 8.2. Realization of ZVS for the Switches -- 8.3. Design Considerations -- 8.3.1. Transformer Winding-Turns Ratio -- 8.3.2. Output Filter Inductance -- 8.3.3. Blocking Capacitor -- 8.4. Experimental Verification.
Additional Edition:
Print version: Ruan, Xinbo. Soft-switching PWM full-bridge converters. Singapore : John Wiley & Sons Inc., 2014 ISBN 9781118702208
Language:
English
Keywords:
Electronic books.
;
Electronic books.
;
Electronic books.
;
Electronic books.
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118702215
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118702215
URL:
https://onlinelibrary.wiley.com/doi/book/10.1002/9781118702215