Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    UID:
    almafu_9959338366102883
    Format: 1 online resource (618 pages) : , illustrations
    Edition: 3rd ed. 2019.
    ISBN: 9783030291648 , 3030291642
    Series Statement: Springer Texts in Statistics,
    Content: Now in its third edition, this companion volume to Ronald Christensen’s Plane Answers to Complex Questions uses three fundamental concepts from standard linear model theory—best linear prediction, projections, and Mahalanobis distance— to extend standard linear modeling into the realms of Statistical Learning and Dependent Data. This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to Plane Answers are made throughout the volume, Advanced Linear Modeling can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
    Note: Includes index. , 1. Nonparametric Regression -- 2. Penalized Estimation -- 3. Reproducing Kernel Hilbert Spaces -- 4. Covariance Parameter Estimation -- 5. Mixed Models and Variance Components -- 6. Frequency Analysis of Time Series -- 7. Time Domain Analysis -- 8. Linear Models for Spacial Data: Kriging -- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications -- 11. Generalized Multivariate Linear Models and Longitudinal Data -- 12. Discrimination and Allocation -- 13. Binary Discrimination and Regression -- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis -- A Mathematical Background -- B Best Linear Predictors -- C Residual Maximum Likelihood -- Index -- Author Index.
    Additional Edition: ISBN 9783030291631
    Additional Edition: ISBN 3030291634
    Language: English
    Subjects: Economics , Mathematics
    RVK:
    RVK:
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages