Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Boston, MA :Elsevier,
    UID:
    almahu_9949697334802882
    Format: 1 online resource (427 p.)
    ISBN: 0-12-801682-5
    Note: Description based upon print version of record. , Front Cover -- Axons and Brain Architecture -- Copyright Page -- Contents -- List of Contributors -- Preface -- Foreword -- Acknowledgments -- Introduction -- I.1 Early History -- I.2 From 1970s: The Age of Technical Advances -- I.2.1 Tracer Injections -- I.2.2 Single Axon Visualization -- I.3 Axonal Phenotypes in Neuroanatomy -- I.4 Axonal Subdomains -- I.5 Outlook -- Readings -- I. Microcircuitry -- Overview -- 1 Axonal Projection of Olfactory Bulb Tufted and Mitral Cells to Olfactory Cortex -- 1.1 Tufted Cells and Mitral Cells are Projection Neurons in the Olfactory Bulb, Conveying Odor Information to the Olfactory ... -- 1.2 Glomerular Modules in the Olfactory Bulb -- 1.2.1 Glomerular Convergence of Olfactory Axons -- 1.2.2 Odorant Receptor Maps in the Main Olfactory Bulb -- 1.2.3 Each Glomerular Module Contains Several Subtypes of Projection Neurons -- 1.3 Dendrodendritic Reciprocal Synaptic Interactions Between Projection Neurons and Granule Cells in the Olfactory Bulb -- 1.3.1 Tufted Cell Circuits and Mitral Cell Circuits in the Olfactory Bulb -- 1.3.2 Odor Inhalation-Induced Gamma Oscillations -- 1.3.3 Sniff-Paced Fast and Slow Gamma Oscillations -- 1.3.4 Signal Timing of Tufted Cells and Mitral Cells in Reference to the Respiration Phase -- 1.4 Total Visualization of Axonal Arborization of Individual Functionally Characterized Tufted and Mitral Cells -- 1.4.1 Methodological Considerations -- 1.4.2 Intrinsic Signal Imaging and Juxtacellular Recordings -- 1.4.3 Juxtacellualr Labeling -- 1.4.4 Histochemistry -- 1.4.5 3D Reconstruction -- 1.5 Axonal Projection of Tufted Cells and Mitral Cells to the Olfactory Cortex -- 1.5.1 Comparison Between Tufted Cells and Mitral Cells -- 1.5.2 Distinct Pattern of Axonal Projection of Tufted Cells and Mitral Cells May Relate to Their Functional Differentiation. , 1.5.3 Axons of Tufted Cells and Mitral Cells Form Synaptic Terminals in the Most Superficial Layer of the Olfactory Cortex -- 1.6 Gamma Oscillation Coupling Between Olfactory Bulb and Olfactory Cortex -- 1.7 Tufted Cells May Provide Specificity-Projecting Circuits Whereas Mitral Cells Give Rise to Dispersedly Projecting "Bind ... -- 1.8 Olfactory Bulbo-Cortico-Bulbar Networks -- 1.9 Conclusions -- Acknowledgments -- References -- 2 The Primate Basal Ganglia Connectome As Revealed By Single-Axon Tracing -- 2.1 Overview of Basal Ganglia Organization -- 2.2 Experimental Procedures -- 2.3 Corticostriatal Projections -- 2.4 Thalamostriatal Projections -- 2.5 Striatofugal Projections -- 2.6 Pallidofugal Projections -- 2.6.1 From the External Pallidum -- 2.6.2 From the Internal Pallidum -- 2.7 Subthalamofugal Projections -- 2.8 Basal Ganglia Connectome and Neurodegenerative Diseases -- 2.8.1 Abbreviations -- References -- 3 Comparative Analysis of the Axonal Collateralization Patterns of Basal Ganglia Output Nuclei in the Rat -- 3.1 Introduction -- 3.2 Basal Ganglia Output Nuclei in the Rat -- 3.3 Afferent and Efferent Connections of the Basal Ganglia Output Nuclei -- 3.4 Afferent and Efferent Connections of the GP -- 3.5 Collateralization Patterns of Single Axons from the Basal Ganglia Output Nuclei -- 3.6 Axonal Branching Patterns of SNr Neurons -- 3.6.1 Thalamus-Only Projecting Axons -- 3.6.2 Brainstem-Only Projecting Axons -- 3.6.3 Thalamus- and Brainstem-Projecting Axons -- 3.7 The Ventral Pallidum -- 3.7.1 VP Neurons Participating in Basal Ganglia Circuits -- 3.7.2 Amygdalopetal Projections from the VP -- 3.7.3 Corticopetal Projections from the VP -- 3.8 Differences in "Pallidal-Like" Projections Among the VP Compartments -- 3.9 VPl as the Ventral Representative of the Indirect Pathway. , 3.10 VPm and VPr as Ventral Representatives of the Direct Pathway -- 3.11 Potential Branching Patterns of the Entopeduncular Projections -- 3.12 Potential Branching Patterns of the GP -- 3.13 Conclusions -- References -- 4 Anatomy and Development of Multispecific Thalamocortical Axons: Implications for Cortical Dynamics and Evolution -- 4.1 Thalamofugal Axon Architectures as Revealed by Bulk-Tracing Methods -- 4.1.1 Subcortical Targets of the Thalamic Projection Neurons -- 4.1.2 TC Pathways: Tangential Distribution Patterns -- 4.1.3 TC Pathways: Radial Distribution Patterns -- 4.2 Thalamofugal Axon Architectures: Single-Axon Labeling Studies -- 4.2.1 Basic TC Neuron Axon Morphotypes -- 4.2.2 Correlations Between Axonal and Somatodendritic Morphologies -- 4.3 Developmental Differentiation of TC Axon Architectures -- 4.3.1 Thalamic Projection Axon Growth and Branching in the Developing Cortex -- 4.3.2 Developmental Plasticity of TC Axon Growth and Branching -- 4.4 Concluding Remarks: Functional Implications of the Diverse Axonal Architectures -- Acknowledgments -- References -- 5 Geometrical Structure of Single Axons of Visual Corticocortical Connections in the Mouse -- 5.1 Introduction -- 5.1.1 Connectomics of the Mouse Cortex -- 5.1.2 Connectivity of the Mouse Visual Cortex -- 5.1.3 Intermodal Connections of the Primary Visual Cortex -- 5.1.4 Hierarchical Organization of Cortical Connections -- 5.1.5 Computational Properties of Axons -- 5.2 Single Axon Structure in Mouse Cortex -- 5.2.1 Axon Reconstruction Methods -- 5.2.2 Individual Axons Projecting from Area V1 to Extrastriate Visual Areas AL and LM -- 5.2.3 Intermodal Projections -- 5.2.3.1 Cortical Hierarchy of Visuo-Tactile Cortical Connections -- 5.2.3.2 Single Axon Structure in Visuo-Tactile Cortical Connections -- 5.2.3.3 Single Axons Structure in Audio Visual Connections. , 5.2.3.4 Are There Two Modes of Cortical Connectivity? -- 5.2.4 Are There Distinct Types of Corticocortical Axons? -- 5.2.5 Computational Properties of Axons -- 5.2.5.1 Axon Diameter -- 5.2.5.2 Varicosities -- 5.2.5.3 GRs of Axonal Bifurcations -- 5.3 Conclusions -- Acknowledgments -- References -- 6 Interareal Connections of the Macaque Cortex: How Neocortex Talks to Itself -- 6.1 Introduction -- 6.2 Feedforward Versus Feedback -- 6.3 Hierarchy -- 6.4 Distance Rule -- 6.5 Drivers and Modulators -- 6.6 Routing Rules -- 6.7 Synapses of Interareal Pathways -- 6.8 Spiny (Excitatory) Neurons as Targets -- 6.9 Smooth (Inhibitory) Cells as Targets -- 6.10 Influence of Synapse Number and Location -- 6.11 Serial Processing and Lateral Thinking -- 6.12 Pathways of Attention -- 6.13 Conclusions -- References -- 7 Topography of Excitatory Cortico-cortical Connections in Three Main Tiers of the Visual Cortex: Functional Implications o ... -- 7.1 Introduction -- 7.2 Methodical Considerations -- 7.3 Laminar Distribution of Long-Range Lateral Connections -- 7.3.1 Upper Tier-Layers 2-3 -- 7.3.1.1 Lateral Connections Are Embedded in Anisotropic Orientation Map -- 7.3.2 Middle Tier-Layer 4 -- 7.3.3 Lower Tier-Layer 6 -- 7.3.4 Summary on Lateral Connections of the Three Main Cortical Tiers -- 7.4 Organization Principles of Patchy Lateral Connections -- 7.4.1 Spatial Constraints of Superficial Layer Patches -- 7.4.2 Inherent Structural Features of the Patchy Network -- 7.4.3 Observing Patches Made of a Single Cell Type -- 7.5 Possible Functional Role of the Patchy System -- 7.5.1 Contribution of Lateral Patchy Connections to Contour Integration -- 7.5.1.1 Spatial Statistical Approach -- 7.5.1.2 Spatial Statistics of Bouton Density to Orientation and Direction Maps -- 7.5.1.3 Axial Rules and Cortical to Visual Space Projection -- 7.6 Outlook -- Acknowledgments. , References -- 8 Do Lateral Intrinsic and Callosal Axons Have Comparable Actions in Early Visual Areas? -- 8.1 Introduction -- 8.2 Anatomical and Topographical Particularities of Long-Range Intrinsic and Callosal Axons -- 8.2.1 Long-Range Intrinsic Axons -- 8.2.2 Clustering and Feature Selectivity of Long-Range Intrinsic Axons -- 8.2.3 Callosal Axons -- 8.2.4 Bilateral Representation of the Visual Field's Vertical Meridian -- 8.2.5 Clustering and Feature Selectivity of Callosal Axons -- 8.2.6 Axial Specificity of Long-Range Lateral and Callosal Axons -- 8.3 Functional Impact of Callosal Axons on Representations and Processing in Cat Areas 17 and 18 -- 8.3.1 Stimulus Gain Regulation by Callosal Action -- 8.3.2 Excitation and Inhibition in Callosal Action -- 8.3.2.1 Long-Range Lateral Axons (Inhibitory) -- 8.3.2.2 Callosal Axons -- 8.3.3 Feature Selectivity in Callosal Action -- 8.3.4 Ongoing Callosal Action -- 8.3.5 Multiplicative and Additive Scaling of Callosal Action -- 8.3.6 Direct and Indirect Callosal Actions -- 8.3.7 Binocularity and Callosal Actions -- 8.3.8 Comparison Between Feedback and Interhemispheric Circuits -- 8.4 Conclusion -- References -- 9 Neuronal Cell Types in the Neocortex -- 9.1 Background -- 9.2 Cell Type Classification by Neuron Morphology -- 9.2.1 Somatic Level -- 9.2.2 Dendritic Level -- 9.2.3 Axonal Level -- 9.3 Cell Type Classification by Neuron Physiology -- 9.3.1 Biophysical Level -- 9.3.2 Receptive Field Level -- 9.4 Cell Type Classification by Molecular/Genetic Profiles -- 9.5 Cell Type Classification in Rat Barrel Cortex -- 9.5.1 Reconstruction of In Vivo Labeled Neurons -- 9.5.2 Classification into Morphological Excitatory Cell Types -- 9.5.3 Registration of Neuron Morphologies -- 9.5.4 Estimation of Putative Synaptic In/Output Patterns -- 9.6 Input-Response-Output Excitatory Cell Types in Rat Barrel Cortex. , 9.6.1 Cell Type-Specific Input-Related Parameters. , English
    Additional Edition: ISBN 0-12-801393-1
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages