UID:
almafu_9961089695302883
Umfang:
1 online resource (730 pages) :
,
illustrations
ISBN:
9780128110348
,
0128110341
,
9780128110331
,
0128110333
Anmerkung:
Front Cover -- New Polymer Nanocomposites for Environmental Remediation -- Copyright -- Dedication -- Contents -- List of contributors -- Preface -- Polymer nanocomposites-An intro -- 1. Introduction -- 2. Polymer composites -- 3. Polymer nanocomposites (PNCs) -- 4. Conclusions -- 5. Websites of interest -- 6. List of famous research journals for PNCs -- References -- Chapter 1: Methods for preparation of nanocomposites in environmental remediation -- 1. Introduction -- 2. Nanomaterials and polymers used in polymer nanocomposites for environmental remediation -- 2.1. Nanomaterials -- 2.1.1. Iron (Fe) -- 2.1.2. Titanium dioxide (TiO2) -- 2.1.3. Cadmium sulfide (CdS) -- 2.1.4. Copper (Cu) -- 2.1.5. Iron/palladium (Fe/Pd) -- 2.2. Polymers -- 2.2.1. Poly(dimethylsiloxane) (PDMS) -- 2.2.2. Polyaniline (PANI) -- 2.2.3. Poly(hydroxybutyrate) (PHB) -- 2.2.4. Poly(vinyl pyrrolidone) (PVP) -- 2.2.5. Poly(methyl methacrylate) (PMMA) -- 2.2.6. Poly(vinylidene fluoride) (PVDF) -- 2.2.7. Polyethylene (PE) -- 2.2.8. Alginate -- 2.2.9. Carboxymethyl cellulose (CMC) -- 2.2.10. Chitosan -- 3. Methods for preparation of nanocomposites -- 3.1. Direct compounding -- 3.1.1. Solvent casting (exfoliation-adsorption) -- 3.1.2. Melt blending (melt intercalation) -- 3.1.3. Template synthesis (sol-gel technology) -- 3.1.4. Electrospinning -- 3.1.5. Self-assembly -- 3.2. In situ synthesis -- 4. New polymer nanocomposites for environmental remediation: Recent applications and studies -- 4.1. Metal/metal oxide polymer nanocomposites for environmental remediation -- 4.2. Magnetic polymer nanocomposites for environmental remediation -- 5. Conclusion -- References -- Chapter 2: Recent advances and perspectives in polymer-based nanomaterials for Cr(VI) removal -- 1. Introduction -- 2. Nanocomposites classifications -- 3. Polymer nanocomposites.
,
4. Preparative methods for polymer nanocomposites -- 5. Polymer nanocomposites and hybrids -- 6. Water pollution -- 7. Remediation of chromium from aqueous media -- 8. Conclusions -- Acknowledgments -- References -- Chapter 3: Environmental application and design of alginate/graphene double-network nanocomposite beads -- 1. Introduction -- 2. Experiment -- 2.1. Materials -- 2.2. Preparation of alginate/GO gels -- 2.3. Characterization methods -- 2.4. Adsorption experiments -- 3. Characterization and synthesization of adsorbent -- 3.1. Swelling and mechanical properties -- 4. Adsorption properties -- 4.1. Adsorption removal of heavy metal ions (Cr2O72- and Cu2+) -- 4.2. Adsorption removal of methylene blue (MB) -- 5. Summary and outlook -- References -- Chapter 4: Major environmental issues and new materials -- 1. Introduction -- 2. Environment and environmental impact -- 2.1. Environment -- 2.2. Environmental impact -- 3. Environmental issues -- 3.1. Pollution -- 3.1.1. Air pollution -- Causes of air pollution -- Effects of air pollution -- 3.1.2. Soil pollution -- Causes of soil pollution -- Types of soil pollutants -- Effects of soil pollution -- 3.1.3. Water pollution -- Water pollution may be of two types -- Causes of water pollution (surface water) -- Causes of ground water pollution -- Effects of water pollution -- 3.1.4. Thermal pollution -- Sources -- Effects -- 3.1.5. Marine pollution -- Sources -- Effects of marine pollution -- 3.1.6. Noise pollution -- Sources -- Effects of noise pollution -- 3.2. Heavy metal pollution -- 3.2.1. Heavy metal emission -- 3.2.2. Bio-importance of heavy metals -- 3.2.3. Heavy metal poisoning and biotoxicity -- 3.2.4. Biochemistry of toxicity -- 3.3. Food pollution -- 3.3.1. Causes of food pollution -- 3.3.2. Sources of pollution in food -- 3.3.3. Common food pollutants -- 3.4. Global warming.
,
3.4.1. Where do we need to reduce emissions? -- Global climate change -- 3.4.2. Develop ``carbon sequestration´´ technology: A response of government -- 3.4.3. Problems with carbon ``sequestration´´ -- 3.5. Waste management -- 3.5.1. Problems associated with waste -- 3.5.2. How is waste dealt with? -- Organic waste: A problem -- 3.5.3. What can we do? -- References -- Further reading -- Chapter 5: Carbon-supported photocatalysts for organic dye photodegradation -- 1. Introduction -- 2. Carbonaceous materials as photocatalyst supports -- 2.1. Activated carbon -- 2.2. Graphite -- 2.3. Carbon nanostructures -- 2.3.1. Graphene -- 2.3.2. Carbon nanotubes -- 2.3.3. Fullerenes -- 2.3.4. Carbon blacks -- 2.3.5. Carbon nanofibers -- 2.3.6. Mesoporous carbon -- 3. Techniques used for the synthesis and coupling of carbon-supported photocatalysts applied in the photodegradation of o ... -- 3.1. Distinction between composites and hybrids -- 3.2. Carbon-photocatalyst synthesis and coupling methods -- 3.2.1. Mechanical mixing -- 3.2.2. Thermal (flame) oxidation -- 3.2.3. Sol-gel -- 3.2.4. Deposition -- 4. Carbon-supported photocatalysts: Applications for organic dye (contaminants-priority pollutants degradation) -- 4.1. Acid dyes -- 4.2. Azoic dyes -- 4.3. Basic dyes -- 4.4. Direct dyes -- 4.5. Disperse dyes -- 5. Conclusion and future outlook -- References -- Further reading -- Chapter 6: Modeling of capillary-driven flow in nanoporous media -- 1. Introduction to capillarity in nanoporous media -- 2. Analytical models for capillary rise in a capillary tube -- 2.1. Classical Lucas-Washburn equation in a macroscopic capillary tube -- 2.2. Modification of Lucas-Washburn equation in a capillary tube at nanoscale -- 2.2.1. Imbibition time exponent -- 2.2.2. Slip condition -- 3. Modeling of capillary-driven flow in nanoporous media -- 4. Optimizing analysis.
,
4.1. Cylindrical capillary tubes -- 4.2. Porous layers -- 4.3. Sensibility analysis -- 5. Conclusions -- Acknowledgements -- References -- Chapter 7: Modeling for mass transport of porous nanofibers using a fractal approach -- 1. Fractal characteristics of micropores in porous nanofibers -- 2. Fractal model for hydraulic permeability and Kozeny-Carman (KC) constant of porous nanofibers -- 2.1. Fractal analytical model -- 2.2. Results and discussions -- 2.3. Conclusions -- 3. Developing a novel form of gas diffusion through fractal nanofibers -- 3.1. Introduction -- 3.2. Fractal method and calculations -- 3.3. Results and discussions -- 3.4. Summary and conclusions -- Acknowledgments -- References -- Chapter 8: Microscale flow and separation process analysis in the nanoporous crystal layer -- 1. Introduction -- 2. Fractal porous media (FPM) theory and the model development -- 2.1. Principle of fractal geometry and FPM theory -- 2.2. Property analysis model of FPM -- 2.2.1. Permeability and seepage kinetics -- 2.2.2. Thermal conductivity -- 2.2.3. FPM theory and the melt crystallization kinetic -- 3. Structure and basic property analysis of the porous crystal layer -- 3.1. Permeability analysis -- 3.2. Thermal conductivity analysis -- 4. Separation process analysis of the porous crystal layer -- 4.1. Primary kinetic research on the sweating process -- 4.2. Modified kinetic process model of flow in the porous crystal layer -- 4.2.1. Process driving force and the flow rate -- 4.2.2. Two basic hypothetical models -- 4.2.3. Characteristic factor -- 4.2.4. Simulation of the seepage process in SMC -- 4.2.5. Simulation of the sweating process in FFMC -- 4.3. Separation process evaluation and optimization -- 4.4. Applications in other mass transfer and separation processes -- 5. Conclusions and perspectives -- Acknowledgments -- References.
,
Chapter 9: First-principles computational analysis of nanocomposite for detecting environmental polluting gas -- 1. Introduction -- 2. Methodology -- 3. Substitutional doping to graphene layers -- 3.1. Atomic structure -- 3.2. Energetics -- 3.3. Energy-band structure -- 3.4. Work function -- 4. Gas adsorption property to graphene layers -- 4.1. Structures and stabilities -- 4.2. Energy-band structures and electron states -- 4.3. Total electron-density distribution -- 4.4. Work function -- 5. Conclusion -- Acknowledgments -- References -- Chapter 10: Environmental remediation by nanoadsorbents-based polymer nanocomposite -- 1. Introduction -- 2. Classification of polymer-nanocomposites -- 2.1. Classification based on the nature of the matrices -- 2.2. Classification based on fillers -- 3. Methods of preparation of polymer nanocomposites -- 3.1. Intercalation method -- 3.2. In situ polymerization method -- 3.3. Sol-gel method -- 3.4. Direct mixing of polymers and nanofillers -- 3.4.1. Melt-compounding method -- 3.4.2. Solution-mixing method -- 4. Applications of the different nano-adsorbent-based polymeric nanocomposites -- 4.1. Removal of heavy metals -- 4.2. Removal of organic contaminants -- 4.3. Removal of toxic dyes -- 5. Nanocomposites: Future trends -- 6. Conclusion -- References -- Chapter 11: Nanoadsorbents-based polymer nanocomposite for environmental remediation -- 1. Introduction -- 2. Adsorption -- 3. Different types of nanoadsorbent-based polymer composites -- 3.1. Graphene/polymer nanocomposites -- 3.2. Carbon nanotubes/polymer nanocomposites -- 3.3. Metal and metal oxide/polymer nanocomposites -- 3.4. Dendrimer-based nanocomposite -- 4. Conclusions -- References -- Chapter 12: Biodegradable polymer-based nanoadsorbents for environmental remediation -- 1. Introduction -- 2. Biodegradable polymers -- 3. Porous resins -- 4. Alginate.
,
5. Chitosan-based adsorbent in heavy metal detoxification.
Sprache:
Englisch