Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin Heidelberg :
    Show associated volumes
    UID:
    almahu_9947363284502882
    Format: XIII, 279 p. , online resource.
    Edition: 3. Folge.
    ISBN: 9783662080542
    Series Statement: Ergebnisse der Mathematik und ihrer Grenzgebiete / A Series of Modern Surveys in Mathematics, 45
    Content: In this text the authors consider the Korteweg-de Vries (KdV) equation (ut = - uxxx + 6uux) with periodic boundary conditions. Derived to describe long surface waves in a narrow and shallow channel, this equation in fact models waves in homogeneous, weakly nonlinear and weakly dispersive media in general. Viewing the KdV equation as an infinite dimensional, and in fact integrable Hamiltonian system, we first construct action-angle coordinates which turn out to be globally defined. They make evident that all solutions of the periodic KdV equation are periodic, quasi-periodic or almost-periodic in time. Also, their construction leads to some new results along the way. Subsequently, these coordinates allow us to apply a general KAM theorem for a class of integrable Hamiltonian pde's, proving that large families of periodic and quasi-periodic solutions persist under sufficiently small Hamiltonian perturbations. The pertinent nondegeneracy conditions are verified by calculating the first few Birkhoff normal form terms -- an essentially elementary calculation.
    Note: I The Beginning -- II Classical Background -- III Birkhoff Coordinates -- IV Perturbed KdV Equations -- V The KAM Proof -- VI Kuksin’s Lemma -- VII Background Material -- VIII Psi-Functions and Frequencies -- IX Birkhoff Normal Forms -- X Some Technicalities -- References -- Notations.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9783642056949
    Language: English
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages