UID:
almahu_9947921565102882
Format:
VIII, 204 p.
,
online resource.
ISBN:
9783540451785
Series Statement:
Lecture Notes in Mathematics, 1471
Content:
This book is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth (which were first introduced by Amice, Velu and Vishik in the elliptic modular case when they come from a good supersingular reduction of ellptic curves and abelian varieties). The given construction of these p-adic L-functions uses precise algebraic properties of the arihmetical Shimura differential operator. The book could be very useful for postgraduate students and for non-experts giving a quick access to a rapidly developping domain of algebraic number theory: the arithmetical theory of L-functions and modular forms.
Note:
Introduction -- Non-Archimedean analytic functions, measures and distributions -- Siegel modular forms and the holomorphic projection operator -- Arithmetical differential operators on nearly holomorphic Siegel modular forms -- Admissible measures for standard L-functions and nearly holomorphic Siegel modular forms.
In:
Springer eBooks
Additional Edition:
Printed edition: ISBN 9783540407294
Language:
English
URL:
http://dx.doi.org/10.1007/b13348