Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge, Massachusetts ; : Gulf Professional Publishing,
    UID:
    almahu_9948025427002882
    Format: 1 online resource (568 pages) : , illustrations (some color), tables, graphs
    ISBN: 0-12-812999-9 , 0-12-812998-0
    Content: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs.
    Note: Front Cover -- Hydraulic Fracture Modeling -- Hydraulic Fracture Modeling -- Copyright -- Contents -- Contributors -- Preface -- Acknowledgments -- 1 - Finite-Element Modeling of the Growth and Interaction of Hydraulic Fractures in Poroelastic Rock Formations -- 1.1 INTRODUCTION -- 1.2 COMPUTATIONAL FRAMEWORK -- 1.3 MODELING OF THERMOPOROELASTIC DEFORMATION IN FRACTURED MEDIA -- 1.4 MODELING DISCRETE FRACTURE GROWTH -- 1.5 EFFECT OF MATRIX POROELASTICITY ON THE GROWTH OF A SINGLE FRACTURE -- 1.6 EFFECT OF INTERACTION ON THE PATHS OF TWO FLUID-DRIVEN PENNY-SHAPED CRACKS -- 1.7 THERMAL EFFECTS ON EARLY STAGES OF HYDRAULIC FRACTURE GROWTH -- 1.8 CONCLUSIONS -- REFERENCES -- 2 - A Framework of Integrated Flow-Geomechanics-Geophysics Simulation for Planar Hydraulic Fracture Propagation -- 2.1 INTRODUCTION -- 2.2 ANALYTICAL METHODS FOR VERTICAL HYDRAULIC FRACTURES -- 2.2.1 Two-Dimensional Fracture Models: Perkins-Kern-Nordgren and Khristianovic-Geertsma-de Klerk Fractures -- 2.2.2 Fracture Propagation and Fracture Widths -- 2.3 NUMERICAL SIMULATION OF VERTICAL HYDRAULIC FRACTURE PROPAGATION IN THREE DIMENSIONS -- 2.3.1 Mathematical Statements and Constitutive Relations -- 2.3.2 Numerical Discretization and Examples -- 2.4 JOINT ANALYSIS OF GEOMECHANICS AND GEOPHYSICS -- 2.4.1 Induced Seismicity -- 2.4.2 Electromagnetic Survey -- 2.5 SUMMARY -- REFERENCES -- FURTHER READING -- 3 - Simulation of Multistage Hydraulic Fracturing in Unconventional Reservoirs Using Displacement Discontinuity Met ... -- 3.1 STRESS SHADOW EFFECT -- 3.1.1 Theoretical Analysis -- 3.1.2 Experimental Observations -- 3.1.3 Field Observations -- 3.2 NUMERICAL APPROACHES FOR MULTISTAGE HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS -- 3.3 SIMULATION OF MULTISTAGE HYDRAULIC FRACTURING IN UNCONVENTIONAL RESERVOIRS USING DISPLACEMENT DISCONTINUITY METHOD. , 3.3.1 Governing Equations for Hydraulic Fracture Growth -- 3.3.1.1 Elasticity -- 3.3.1.2 Fluid Flow -- 3.3.1.3 Fracture Initiation and Propagation -- 3.4 MODEL VALIDATION -- 3.4.1 Mechanical Calculation Validation -- 3.4.2 Radial Fracture Propagation -- 3.5 APPLICATION -- 3.5.1 Fracture Height Growth in Multilayer Formations -- 3.5.2 Multistage Hydraulic Fracturing -- 3.6 CONCLUSIONS -- REFERENCES -- 4 - Quasistatic Discrete Element Modeling of Hydraulic and Thermal Fracturing Processes in Shale and Low-Permeabili ... -- 4.1 INTRODUCTION -- 4.2 QUASISTATIC DISCRETE ELEMENT MODEL -- 4.3 FRACTURING OF BRITTLE CRYSTALLINE ROCK BY THERMAL COOLING -- 4.4 HYDRAULIC FRACTURING MODELING BY COUPLED QUASISTATIC DISCRETE ELEMENT MODEL AND CONJUGATE NETWORK FLOW MODEL -- 4.4.1 Methodology of Coupled Discrete Element Model and Dual Network Flow Model -- 4.4.2 Simultaneous Propagation of Interacting Fractures -- 4.4.3 Interaction Between Propagating Hydraulic Fracture and Natural Fracture -- 4.4.4 Three-Dimensional Simulations of Hydraulic Fracturing -- REFERENCES -- 5 - Hydraulic Fracturing Modeling and Its Extension to Reservoir Simulation Based on Extended Finite-Element Method ... -- 5.1 INTRODUCTION -- 5.2 MATHEMATICAL MODEL OF HYDRAULIC FRACTURE PROPAGATION -- 5.2.1 Underlying Assumptions -- 5.2.2 Governing Equations -- 5.2.3 Fracture Propagation Criteria -- 5.3 NUMERICAL SCHEME FOR HYDRAULIC FRACTURING -- 5.3.1 Stress Field With Extended Finite-Element Method -- 5.3.2 Pressure Field With Finite-Element Method -- 5.3.3 Coupling Schemes -- 5.4 NUMERICAL CASES AND RESULTS ANALYSIS -- 5.4.1 Validation of Numerical Model -- 5.4.2 The Effect of Rock Properties -- 5.4.3 The Effect of Fluid Properties -- 5.4.4 The Effect of Natural Fracture -- 5.5 MODELING OF SIMULTANEOUS PROPAGATION OF MULTIPLE CLUSTER FRACTURES -- 5.5.1 Problem Formulations. , 5.5.2 Tip Asymptotic Solution -- 5.5.3 Numerical Algorithm -- 5.5.4 Numerical Results -- 5.6 EXTENSIONS TO RESERVOIR HYDROMECHANICAL SIMULATION -- 5.6.1 Coupling Scheme for Extended Finite-Element Method and Embedded Discrete Fracture Model -- 5.6.2 Numerical Examples -- 5.7 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 6 - Fully Coupled 3-D Hydraulic Fracture Models-Development and Validation -- 6.1 INTRODUCTION -- 6.2 NUMERICAL FORMULATION -- 6.2.1 Fluid Flow in the Porous Medium -- 6.2.2 Fracture Nucleation and Propagation -- 6.2.3 Fluid Flow in the Fracture -- 6.3 IMPLEMENTATION SCHEME -- 6.3.1 Cohesive Elements -- 6.3.2 Extended Finite Elements -- 6.4 SOLUTION VERIFICATION -- 6.4.1 Vertical Planar Khristianovich-Geertsma-de Klerk Fracture -- 6.4.2 Radial (Penny-Shaped) Fracture -- 6.5 MODEL VALIDATION -- 6.5.1 Laboratory-Scale Model -- 6.5.2 Field-Scale Model -- 6.6 CONCLUSION -- NOMENCLATURE -- ACKNOWLEDGMENTS -- REFERENCES -- FURTHER READING -- 7 - Continuum Modeling of Hydraulic Fracturing in Complex Fractured Rock Masses -- 7.1 INTRODUCTION -- 7.2 TOUGH-FLAC SIMULATOR AND FRACTURE CONTINUUM APPROACH -- 7.2.1 TOUGH-FLAC Simulator -- 7.2.2 Fracture Continuum Approach -- 7.3 VERIFICATION AND DEMONSTRATION -- 7.3.1 Hydromechanics in Complex Fractured Rock -- 7.3.2 Fracture Propagation Across Discontinuities and Geological Layers -- 7.3.2.1 Verification of the Model for Fracture Propagation -- 7.3.2.2 The Effects of Nearby Fractures on Hydraulically Induced Fracture Propagation -- 7.3.2.3 The Influence of Complex Geological Settings on Hydraulically Induced Fracture Propagation -- 7.3.3 Classical Hydraulic Fracturing Stress Measurement Operation -- 7.4 CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- 8 - Development of a Hydraulic Fracturing Simulator for Single-Well Fracturing Design in Unconventional Reservoirs -- 8.1 INTRODUCTION. , 8.2 FRACTURE FLUID CHARACTERIZATION -- 8.3 FRACTURE MASS CONSERVATION EQUATIONS -- 8.4 FRACTURE ENERGY EQUATION -- 8.5 FRACTURE MECHANICS EQUATIONS -- 8.6 FLUID LEAK-OFF FORMULATION -- 8.7 WELLBORE MASS, FLOW, AND ENERGY EQUATIONS -- 8.8 STRESS SHADOW EFFECT -- 8.9 GOVERNING EQUATION SOLUTION -- 8.10 FRACTURE DISCRETIZATION -- 8.11 DISCRETIZED FRACTURE MASS AND ENERGY CONSERVATION EQUATIONS -- 8.12 DISCRETIZED FRACTURE MECHANICS EQUATIONS -- 8.13 DISCRETIZED WELLBORE MASS AND ENERGY CONSERVATION EQUATIONS -- 8.14 WELLBORE-SURROUNDINGS TRANSFER -- 8.15 SOLUTION OF FINITE DIFFERENCE FLOW, ENERGY, AND FRACTURE MECHANICS EQUATIONS -- 8.16 TIME STEP SIZE SELECTION -- 8.17 EXAMPLE PROBLEMS -- 8.17.1 Radial Fracture Propagation -- 8.17.2 PKN-Like Fracture Propagation -- 8.17.3 Field-Type Simulation -- 8.18 SUMMARY AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 9 - Modeling Rock Fracturing Processes With FRACOD -- 9.1 INTRODUCTION -- 9.2 ROCK FRACTURE PROPAGATION MECHANISMS AND FRACTURE CRITERION -- 9.3 THEORETICAL BACKGROUND OF FRACOD -- 9.4 COUPLING BETWEEN ROCK FRACTURING AND THERMAL AND HYDRAULIC PROCESSES -- 9.4.1 Rock Fracturing-Thermal Coupling -- 9.4.2 Fracturing-Hydraulic Flow Coupling -- 9.4.3 Hydraulic Flow-Thermal Coupling -- 9.5 VALIDATION AND DEMONSTRATION EXAMPLES -- 9.5.1 Modeling Biaxial Compressive Test -- 9.5.2 Modeling Borehole Breakouts -- 9.5.3 Cooling Fractures in Borehole Wall -- 9.5.4 Rock Mass Cooling Due to Fluid Flow -- 9.6 MODELING HYDRAULIC FRACTURING USING FRACOD -- 9.6.1 Verification Example-Hydraulic Fracturing in Intact Rock -- 9.6.2 Verification Against the Khristianovic-Geertsma-de Klerk Model -- 9.6.3 Modeling Fracture Diversion -- 9.7 MODELING CO2 GEOSEQUESTRATION EXPERIEMENT USING FRACOD -- 9.7.1 Fault Reactivation -- 9.7.2 Caprock Stability -- 9.8 CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES. , 10 - An Integrated Study for Hydraulic Fracture and Natural Fracture Interactions and Refracturing in Shale Reservoirs -- 10.1 INTRODUCTION -- 10.2 BACKGROUND -- 10.3 COUPLED GEOMECHANICAL AND FLUID FLOW MODEL -- 10.4 CASE STUDY: THE EAGLE FORD SHALE WELL PAD MODELING -- 10.4.1 Complex Discrete Fracture Network Model With Predetermined Fracture Geometry -- 10.4.2 Complex Discrete Fracture Network Model With Coupled Fracture Growth Simulations -- 10.4.3 Refracturing -- 10.5 DISCUSSIONS AND CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- 11 - Development of a Coupled Reservoir-Geomechanical Simulator for the Prediction of Caprock Fracturing and Fault ... -- 11.1 INTRODUCTION -- 11.2 GEOMECHANICAL FORMULATION -- 11.2.1 Mean Stress Equation -- 11.2.2 Stress Tensor Components -- 11.3 FLUID AND HEAT FLOW FORMULATION -- 11.4 DISCRETIZATION AND SOLUTION OF GOVERNING EQUATIONS -- 11.4.1 Discretization of Simulator Conservation Equations -- 11.4.2 Solution of Simulator Conservation Equations -- 11.4.3 Geomechanical Boundary Conditions and Stress Field Initialization -- 11.5 PERMEABILITY AND POROSITY DEPENDENCIES -- 11.5.1 Isotropic Porous Media -- 11.5.2 Fractured Media -- 11.6 CAPROCK FRACTURING AND FAULT REACTIVATION -- 11.6.1 Caprock Tensile Failure -- 11.6.2 Fault and Fracture Reactivation -- 11.6.3 Caprock Shear Failure -- 11.7 EXAMPLE SIMULATIONS -- 11.7.1 Displacement From a Uniform Load on a Semiinfinite Elastic Medium -- 11.7.2 Two-Dimensional Mandel-Cryer Effect -- 11.7.3 Depletion of a Single-Phase Reservoir -- 11.7.4 In Salah Gas Project -- 11.7.5 CO2 Leakage Through Fault Zones -- 11.7.6 Fracture of a Concrete Block -- 11.8 SUMMARY AND CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 12 - Modeling of Cryogenic Fracturing Processes -- 12.1 INTRODUCTION -- 12.1.1 Comparison With Hydraulic Fracturing -- 12.1.2 History of Cryogenic Fracturing. , 12.2 PHYSICAL PROCESS OF CRYOGENIC FRACTURING.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages