Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9960118372902883
    Format: 1 online resource (xxix, 412 pages) : , digital, PDF file(s).
    Edition: 1st ed.
    ISBN: 1-108-63401-X
    Content: Solar photovoltaics (SPV) forms an integral part of renewable energy systems that are crucial for combating global warming. Written to serve as an ideal text for students, researchers and industrial personnel, it discusses the principles of operation of photovoltaic devices, their limitations, choice of materials, and maximum efficiencies. It covers in depth discussion of new materials and devices based on organics and perovskites, and a flow-chart of the manufacture of Si, GaAs and CdTe cells, their characterization and testing. It highlights characterization, testing and reliability of solar PV modules, comparison of fixed and tracking SPV systems using concentrator cells. Economical aspects of grid-connected and stand-alone systems and a wide range of applications, from solar pumps, and street lighting to large power plants is covered in the text. Several aspects such as cell and module manufacture, characterization, testing, reliability, and system design are described considering commercial SPV manufacturing plants.
    Note: Title from publisher's bibliographic system (viewed on 25 Jul 2018). , Cover -- Photovoltaic Science and Technology -- Title -- Copyright -- Dedication -- Contents -- Figures -- Tables -- Preface -- Acknowledgments -- 1. Introduction to Solar Energy and Solar Photovoltaics -- 1.1 INTRODUCTION -- 1.1.1 Definitions -- 1.2 SOLAR ENERGY CONVERSION -- 1.2.1 Solar Thermal (STH) -- 1.2.2 Solar Photovoltaics (SPV) -- Early Research -- 1.3 PRINCIPLE -- 1.4 OPTICAL PROPERTIES OF SEMICONDUCTORS -- 1.5 DIRECT VS INDIRECT GAP SEMICONDUCTORS -- 1.6 ELECTRICAL PROPERTIES OF P-N JUNCTIONS -- 1.7 C-V RELATION -- 1.8 SCHOTTKY BARRIER CELLS -- 1.9 METAL-INSULAOR-SEMICONDUCTOR SOLAR CELLS -- 1.10 VERTICAL JUNCTION CELLS -- 1.11 HETEROJUNCTIONS -- 1.12 EFFICIENCY LIMITATIONS -- 1.13 SHOCKLEY-QUEISSER THEORY -- 1.14 CdS/p-Cu2S THIN FILM CELLS -- SUMMARY -- PROBLEMS -- REFERENCES -- 2. Crystalline Silicon Cells -- 2.1 POLYSILICON PRODUCTION -- 2.2 CRYSTAL GROWTH -- 2.3 FLOAT ZONE SILICON -- 2.4 DIRECTIONAL SOLIDIFICATION -- 2.5 GROWTH OF RIBBON SILICON -- 2.5.1 Upgraded Metallurgical-grade (UMG) Silicon -- 2.6 PROPERTIES OF SILICON -- 2.7 TEMPERATURE DEPENDENCE -- 2.8 RECOMBINATION -- 2.9 SURFACE RECOMBINATION -- 2.10 SI MULTI-CRYSTALLINE CELLS -- 2.11 SPECTRAL RESPONSE -- 2.12 CELL PERFORMANCE AT DIFFERENT INSOLATIONS -- 2.13 IMPROVED SILICON CELL STRUCTURES -- 2.14 THIN SI CELLS -- 2.14.1 Diffuse Back Reflector -- 2.14.2 Black Silicon -- 2.15 PLASMONIC SOLAR CELLS -- 2.16 LUMINESCENT SOLAR CONCENTRATORS (LSC) -- 2.17 DIRECTIONALLY SELECTIVE FILTER -- 2.18 HIGH EFFICIENCY CELLS -- SUMMARY -- PROBLEMS -- REFERENCES -- 3. Thin Film Solar Cells -- 3.1 INTRODUCTION -- 3.2 AMORPHOUS SILICON CELLS -- 3.2.1 Properties of Amorphous Silicon -- 3.2.2 Deposition -- 3.2.3 Amorphous Silicon Solar Cells -- 3.2.3.1 P-I-N cells -- 3.2.4 Staebler-Wronski Effect -- 3.2.5 Production -- 3.2.6 Nanocrystalline Si -- 3.3 TANDEM CELLS -- 3.4 HIT CELLS. , 3.5 CIS AND CIGS THIN FILM CELLS -- 3.6 CdTe CELLS -- 3.7 CZTSSe SOLAR CELLS -- 3.7.1 Deposition Processes -- 3.7.2 Cell Structure -- 3.8 PEROVSKITE SOLAR CELLS -- 3.8.1 Cell Structures -- 3.8.2 Fabrication Processes -- 3.8.3 Film Characterization -- 3.8.4 Cell Properties -- 3.8.5 Stability and Degradation -- 3.8.6 Alternatives to MAPbI -- 3.8.7 Tandem Perovskite Cells -- SUMMARY -- PROBLEMS -- REFERENCES -- 4. III-V Compound, Concentrator and Photoelectrochemical Cells -- 4.1 III-V COMPOUND SEMICONDUCTOR SOLAR CELLS -- 4.2 HETEROSTRUCTURES -- 4.3 METALORGANIC VAPOUR PHASE EPITAXY (MOVPE) -- 4.4 STRAINED LAYERS -- 4.5 CONCENTRATOR SOLAR CELLS -- 4.5.1 Introduction -- 4.5.2 Cell Temperatures -- 4.5.3 Spectral Splitting -- 4.5.4 Classifi cation of Concentrators Levels -- 4.5.5 Concentrator Cell Design -- 4.5.6 Quantum Efficiency -- 4.6 MULTI-JUNCTION CELLS -- 4.6.1 Triple Junction Solar Cells -- 4.6.2 Growth Process -- 4.6.3 4 Layer Tandem Cells -- 4.7 NITRIDE FAMILY -- 4.8 LABORATORY VS PANEL EFFICIENCIES OF SOLAR CELLS -- 4.9 SOLAR CELLS IN SPACE APPLICATION -- 4.9.1 Design of Solar Cells Operating in Space -- 4.9.2 Radiation Resistance of PV Cells -- 4.9.3 Space-based Solar Power (SBSP) -- 4.10 PHOTOELECTROCHEMICAL DEVICES -- 4.10.1 Photo-electrochemical (PEC) Solar Cells -- 4.10.2 Dye-sensitized TiO2 Grätzel cells -- 4.10.3 PEC Storage System -- 4.10.4 Solar Hydrogen Generation -- SUMMARY -- PROBLEMS -- REFERENCES -- 5. Organic and Polymer Solar cells -- 5.1 INTRODUCTION -- 5.2 ENERGY LEVELS -- 5.3 ADVANTAGES OF ORGANIC SEMICONDUCTORS -- 5.4 DISADVANTAGES OF ORGANICS -- 5.5 DIFFERENCES BETWEEN ORGANIC AND INORGANIC PHOTOVOLTAICS -- 5.6 TYPES OF ORGANIC MOLECULES -- 5.7 STEPS FOR SOLAR CELL OPERATION -- 5.7.1 Cell Parameters -- 5.8 FUNDAMENTAL LIMITS TO EFFICIENCY OF ORGANIC CELLS -- 5.9 TYPES OF ORGANIC CELLS -- 5.9.1 Single Layer Cells. , 5.9.2 Cell Fabrication -- 5.9.2.1 Bilayer cells -- 5.9.2.2 Advanced structures -- 5.9.2.3 Heterostructure devices -- 5.9.3 High Performance Solution-Processed Bulk Heterojunction Solar Cells Fabricated from Small Molecules -- 5.9.4 Solar Cell Combines Singlet Fission with IR Absorption -- 5.10 PROPOSALS FOR FUTURE ORGANIC CELLS -- 5.10.1 Nanotechnology -- 5.10.2 Multi-Exciton Generation (MEG) -- 5.10.3 Mechanisms -- 5.10.4 Experimental Results -- 5.11 THIRD GENERATION PHOTOVOLTAICS -- SUMMARY -- PROBLEMS -- REFERENCES -- 6. Manufacture of c-Si and III-V-based High Efficiency Solar PV Cells -- 6.1 INTRODUCTION -- 6.2 C-SI CELL MANUFACTURING: BASE LINE PROCESS -- 6.2.1 Starting Wafer -- 6.2.2 Texturization -- 6.2.3 Emitter Doping -- 6.2.4 Anti-Reflection Coating (ARC) Deposition -- 6.2.5 Metallization: Metal Print and Firing -- 6.2.6 Edge Isolation -- 6.2.7 Final Testing-Sorting-Binning of Cells -- 6.3 ADVANCES IN C-SI CELL TECHNOLOGY -- 6.3.1 Double Printing of Metal Fingers -- 6.3.2 Selective Emitter -- 6.3.3 Buried Contact Process -- 6.3.4 Light-Induced Plating (LIP) -- 6.3.5 Metal Wrap Through (MWT) -- 6.3.6 Emitter Wrap Through (EWT) -- 6.3.7 Back Surface Passivation-PERC, PERL and PERT -- 6.3.8 Inter-digitated Back Contact (IBC) -- 6.4 HIGH EFFICIENCY III-V BASED CELL TECHNOLOGY -- 6.4.1 Ge Characterization -- 6.4.2 Epitaxial Layer Growth: Formation of Solar Cells -- 6.4.3 Bypass Diode Formation -- 6.4.4 Front Metallization, ARC Deposition, Back Metallization and Testing -- SUMMARY -- PROBLEMS -- REFERENCES -- 7. Manufacture of Solar PV Modules -- 7.1 INTRODUCTION -- 7.2 C-SI MODULE CONFIGURATION AND MANUFACTURING -- 7.2.1 Cell to Module (CTM) Conversion Loss -- Tabbing-Stringing-Bussing -- Lamination -- 7.2.2 Bypass Diodes -- 7.2.2.1 Simplistic View of Shading -- 7.2.2.2 Detailed Analysis of Shading -- 7.3 a-Si MODULE MANUFACTURING. , 7.4 COMPOUND SEMICONDUCTOR THIN FILM MANUFACTURING -- 7.5 ECONOMICS OF MODULE MANUFACTURING -- 7.5.1 Cost Structure of SPV Module Manufacturing -- SUMMARY -- PROBLEMS -- REFERENCES -- 8. Characterization, Testing and Reliability of Solar PV Module -- 8.1 INTRODUCTION -- 8.2 CHARACTERIZATION DURING C-SI MODULE MANUFACTURING -- 8.2.1 Tab Pull Test for T& -- S Process -- 8.2.2 Electro-Luminescence (EL) -- 8.2.3 Dry and Wet Isolation Test -- 8.2.4 Junction Box Adhesion Test -- 8.2.5 Infrared Imaging for Hot Spot -- 8.3 TESTING FOR ELECTRICAL CHARACTERISTICS OF FINISHED MODULE -- 8.4 RELIABILITY MODELLING AND TESTING -- 8.4.1 Reliability Modelling and Failure Rate Prediction -- 8.4.2 Reliability Standard, Test Strategy and Failure Analysis -- 8.4.2.1 Reliability Standard and Test Strategy for SPV Modules -- 8.4.2.1.1 Hot Spot Endurance Test -- 8.4.2.1.2 UV Preconditioning Test -- 8.4.2.1.3 Thermal Cycling (TC) Test -- 8.4.2.1.4 Damp Heat (DH) Test -- 8.4.2.1.5 Humidity Freeze (HF) Test -- 8.4.2.1.6 Mechanical Load Test -- 8.4.2.1.7 Hail Test -- 8.4.2.1.8 Bypass Diode Thermal Test -- 8.4.2.2 Qualification Test Plan and Certification -- 8.4.3 Potential Induced Degradation (PID) -- SUMMARY -- PROBLEMS -- REFERENCES -- 9. Overview of Solar PV System Technology and Design -- 9.1 INTRODUCTION -- 9.2 FIXED AND TRACKING SPV SYSTEMS -- 9.3 SOLAR INVERTER AND PCU -- 9.4 CONNECTION OF SOLAR MODULES IN SPV SYSTEMS-STRING DESIGN -- 9.5 SOLAR CELL/MODULE TECHNOLOGY -- 9.6 SIZING OF INVERTER/PCU AND BATTERY -- 9.7 CLASSIFICATION OF SPV SYSTEM AND BRIEF DESCRIPTION -- 9.7.1 Off-Grid System: Stand Alone and Grid Interactive -- 9.7.2 Solar Pump -- 9.7.3 Cell Tower -- 9.7.4 Solar Street Light -- 9.7.5 On-Grid System - SPV Power Plant -- 9.8 ENERGY PRODUCTION FROM SPV SYSTEM -- 9.9 ECONOMIC VIABILITY OF SPV SYSTEMS -- SUMMARY -- PROBLEMS -- REFERENCES. , 10. Design and Implementation of Off-Grid and On-Grid SPV Systems -- 10.1 INTRODUCTION -- 10.2 BALANCE OF SYSTEM (BOS) -- 10.2.1 DC-DC Converter -- 10.2.2 Maximum Power Point Tracking (MPPT) -- 10.2.3 Inverter and PCU -- 10.2.3.1 Peak, Euro and CEC Efficiencies of Inverter -- 10.2.3.2 Types of Inverters -- 10.2.4 Storage -- 10.2.4.1 Lead-Acid Storage Battery -- 10.2.5 Bypass and Blocking Diodes -- 10.3 GRID INTERACTIVE NET METERING SPV SYSTEMS -- 10.4 ENERGY ESTIMATION OF SPV SYSTEMS -- 10.5 PERFORMANCE RATIO (PR) AND CAPACITY UTILIZATION FACTOR (CUF) OF SPV POWER PLANTS -- 10.6 LEVELIZED COST OF ENERGY (LCOE) -- SUMMARY -- PROBLEMS -- REFERENCES -- Index.
    Additional Edition: ISBN 1-108-41524-5
    Additional Edition: ISBN 1-108-23171-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages