Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949244539202882
    Format: 1 online resource (316 pages)
    ISBN: 0-12-821079-6
    Content: "Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers."--
    Note: "Additional resources related to the book can be found at polymersmechanics.com."--Title details screen. , Intro -- Applied Mechanics of Polymers: Properties, Processing, and Behavior -- Copyright -- Contents -- Chapter 1: Introduction and background -- 1.1. Introduction -- 1.2. Historical perspective -- 1.3. Type of polymers -- 1.4. Areas of study in polymer science -- 1.4.1. Polymer chemistry -- 1.4.2. Polymer physics -- 1.4.3. Polymer mechanics -- 1.5. Industrial applications of polymers -- 1.6. Closing remarks -- Practice problems -- References -- Chapter 2: General properties of polymers -- 2.1. Introduction -- 2.2. Quasi-static mechanical response -- 2.3. Long-term properties -- 2.3.1. Creep -- 2.3.2. Relaxation -- 2.4. Dynamic properties -- 2.5. Other properties -- Practice problems -- References -- Chapter 3: Processing and manufacturing of polymers -- 3.1. Introduction -- 3.2. Extrusion -- 3.3. Sheets, films, and filaments -- 3.4. Thermoforming -- 3.5. Injection molding -- 3.6. Additive manufacturing -- Practice problems -- References -- Chapter 4: Linear elastic behavior of polymers -- 4.1. Introduction -- 4.2. Stress and equilibrium -- 4.2.1. Plane stress -- 4.2.2. Simple tension -- 4.2.3. Simple shear -- 4.2.4. Hydrostatic stress -- 4.3. Strain and compatibility -- 4.3.1. Plane strain -- 4.4. Linear elastic material behavior -- 4.4.1. Isotropic materials -- 4.4.2. Orthotropic materials -- 4.4.3. Transverse isotropic materials -- 4.5. Structural component design -- 4.6. Applied FEA simulation examples -- Practice problems -- References -- Chapter 5: Hyperelastic behavior of polymers -- 5.1. Introduction -- 5.2. Theoretical preliminaries -- 5.2.1. Displacement field -- 5.2.2. Deformation gradient -- 5.2.3. Polar decomposition -- 5.2.4. Strain tensors -- 5.2.5. Stress tensors -- 5.3. Stress-strain relationships -- 5.4. Hyperelastic models -- 5.4.1. Neo-Hookean model -- 5.4.2. Mooney-Rivlin model -- 5.4.3. Yeoh model -- 5.4.4. Gent model. , 5.4.5. Ogden model -- 5.4.6. Ogden Hyper-foam model -- 5.5. Applications of hyperelastic models in component design -- Practice problems -- References -- Chapter 6: Creep behavior of polymers -- 6.1. Introduction -- 6.2. Simple creep models -- 6.2.1. Maxwell model -- 6.2.2. Kelvin model -- 6.2.3. Four-parameters model -- 6.2.4. Zener model -- 6.3. Additional creep models -- 6.3.1. Findley power law -- 6.3.2. Norton-bailey law -- 6.3.3. Prandtl-Garofalo law -- 6.4. Applications of creep in component design -- 6.5. Applied FEA simulation example -- Practice problems -- References -- Chapter 7: Viscoelastic behavior of polymers -- 7.1. Introduction -- 7.2. Theoretical preliminaries -- 7.2.1. Boltzmann superposition principle -- 7.2.2. Generalized Maxwell model -- 7.2.3. Generalized Kelvin model -- 7.3. Linear viscoelasticity -- 7.3.1. Small-strain linear viscoelasticity -- 7.3.2. Large-strain linear viscoelasticity -- 7.4. Applications of linear viscoelasticity in component design -- 7.5. Applied FEA simulation example -- Practice problems -- References -- Chapter 8: Electroactive polymers -- 8.1. Introduction -- 8.2. Theoretical preliminaries -- 8.3. Electrostrictive polymers -- 8.4. Dielectric elastomers -- 8.5. Applications of electroactive polymers -- 8.6. Applied FEA simulation example -- Practice problems -- References -- Chapter 9: Hydrogels -- 9.1. Introduction -- 9.2. Mechanics of hydrogels -- 9.2.1. Hydrogel deformation theory -- 9.2.2. Poroelasticity -- 9.3. Applications of hydrogels -- 9.4. Applied FEA simulation example -- Practice problems -- References -- Chapter 10: Failure and fracture of polymers -- 10.1. Introduction -- 10.2. Shear yielding -- 10.3. Crazing -- 10.4. Fracture mechanics -- 10.5. Fatigue -- Practice problems -- References -- Chapter 11: Characterization of polymers -- 11.1. Introduction -- 11.2. Thermal characterizations. , 11.2.1. Differential scanning calorimetry -- 11.2.2. Thermogravimetric analyzer -- 11.3. Microscopy characterizations -- 11.3.1. Optical microscopy -- 11.3.2. Scanning electron microscopy -- 11.3.3. Transmission electron microscopy -- 11.3.4. Atomic force microscopy -- 11.4. Spectroscopy characterizations -- 11.4.1. UV-visible spectroscopy -- 11.4.2. Fourier transform infrared spectroscopy -- 11.4.3. Raman spectroscopy -- 11.4.4. Terahertz time-domain spectroscopy -- Practice problems -- References -- Index.
    Additional Edition: Print version: Youssef, George Applied Mechanics of Polymers San Diego : Elsevier,c2021 ISBN 9780128210789
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages