Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949930862502882
    Umfang: XXXVIII, 464 p. 167 illus., 152 illus. in color. , online resource.
    Ausgabe: 1st ed. 2025.
    ISBN: 9783031781049
    Serie: Lecture Notes in Computer Science, 15328
    Inhalt: The multi-volume set of LNCS books with volume numbers 15301-15333 constitutes the refereed proceedings of the 27th International Conference on Pattern Recognition, ICPR 2024, held in Kolkata, India, during December 1-5, 2024. The 963 papers presented in these proceedings were carefully reviewed and selected from a total of 2106 submissions. They deal with topics such as Pattern Recognition; Artificial Intelligence; Machine Learning; Computer Vision; Robot Vision; Machine Vision; Image Processing; Speech Processing; Signal Processing; Video Processing; Biometrics; Human-Computer Interaction (HCI); Document Analysis; Document Recognition; Biomedical Imaging; Bioinformatics.
    Anmerkung: Optimizing Personalized Robot Actions with Ranking of Trajectories -- Synthesizing operationally safe controllers for human-in-the-loop human-in-the-plant hybrid close loop systems -- Multi-Frequency Fine-Grained Matching for Audio-Visual Segmentation -- Confidence-Guided Feature Alignment for Cloth-Changing Person Re-identification -- Fair Latent Representation Learning with Adaptive Reweighing -- FineFACE: Fair Facial Attribute Classification Leveraging Fine-grained Features -- One-factor Cancelable Biometric Template Protection Scheme for Real-valued Features -- Multi-Teacher Invariance Distillation for Domain-Generalized Action Recognition -- ALS-HAR: Harnessing Wearable Ambient Light Sensors to Enhance IMU-based Human Activity Recognition -- Spatio-Temporal Domain-Aware Network for Skeleton-based Action Representation Learning -- Project and Pool: An Action Localization network for localizing actions in Untrimmed Videos -- Multi-Teacher Importance Preserving Knowledge Distillation for Early Violence Prediction -- Improving Temporal Action Segmentation and Detection with Hierarchical Task Grammar -- Hybrid Human Action Anomaly Detection based on Lightweight GNNs and Machine Learning -- Zero-Shot Spatio-Temporal Action Detection by Enhancing Context-Relation Capability of Vision-Language Models -- Nonlinear progressive denoising: a universal regularized denoising strategy for low PSNR images -- Unified-EGformer: Exposure Guided Lightweight Transformer for Mixed-Exposure Image Enhancement -- Composite Concept Extraction through Backdooring -- Guided SAM: Label-Efficient Part Segmentation -- Multidimensional Cross-Reconstructed Networks for Few-Shot Fine-Grained Image Classification -- Symmetric masking strategy enhances the performance of Masked Image Modeling -- Multiplicative RMSprop using gradient normalization for learning acceleration -- TADIL: Task-Agnostic Domain-Incremental Learning through Task-ID Inference using Transformer Nearest-Centroid Embeddings -- Evidential Federated Learning for Skin Lesion Image Classification -- Adaptive Text Feature Updating for Visual-Language Tracking -- TrajDiffuse: A Conditional Diffusion Model for Environment-Aware Trajectory Prediction -- Principal Graph Neighborhood Aggregation for Underwater Moving Object Detection -- Dynamic Loss Decay based Robust Oriented Object Detection on Remote Sensing Images with Noisy Labels -- Environment-Independent Fusion for Robust Object Detection in Adverse Environments -- Transformer-based RGB and LiDAR Fusion for Enhanced Object Detection.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9783031781032
    Weitere Ausg.: Printed edition: ISBN 9783031781056
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz