UID:
almahu_9949982514802882
Format:
1 online resource (811 pages)
Edition:
2nd ed.
ISBN:
9783030447878
Series Statement:
Graduate Texts in Physics Series
Note:
Intro -- The Acoustical Society of America -- Preface to the Second Edition -- Preface to the First Edition -- List of Recurring Symbols -- Roman Lower Case -- Roman Lower Case -- Roman Upper Case -- Greek Lower Case -- Greek Upper Case -- Subscripted Upper-Case Roman -- Subscripted Lower-Case Roman -- Subscripted Lower-Case Greek -- Phasors -- Other -- Acknowledgments -- Contents -- About the Book -- About the Author -- Chapter 1: Comfort for the Computationally Crippled -- 1.1 The Five Most Useful Math Techniques -- 1.1.1 Taylor Series -- 1.1.2 The Product Rule or Integration by Parts -- 1.1.3 Logarithmic Differentiation -- 1.2 Equilibrium, Stability, and Hookeś Law -- 1.2.1 Potentials and Forces -- 1.2.2 A Simple Pendulum -- 1.3 The Concept of Linearity -- 1.4 Superposition and Fourier Synthesis -- 1.5 Convenience (Complex) Numbers -- 1.5.1 Geometrical Interpretation on the Argand Plane -- 1.5.2 Phasor Notation -- 1.5.3 Algebraic Operations with Complex Numbers -- 1.5.4 Integration and Differentiation of Complex Exponentials -- 1.5.5 Time Averages of Complex Products (Power) -- 1.6 Standard (SI) Units and Dimensional Homogeneity -- 1.7 Similitude and the Buckingham Pi-Theorem (Natural Units) -- 1.7.1 Three Simple Examples -- 1.7.2 Dimensionless Pi-Groups -- 1.7.3 Windscreen Noise* -- 1.7.4 Similitude Summary -- 1.8 Precision, Accuracy, and Error Propagation -- 1.8.1 Random Errors (Noise) and Relative Uncertainty -- 1.8.2 Normal Error Function or the Gaussian Distribution -- 1.8.3 Systematic Errors (Bias) -- 1.8.4 Error Propagation and Covariance -- 1.8.5 Significant Figures -- 1.9 Least-Squares Fitting and Parameter Estimation -- 1.9.1 Linear Correlation Coefficient -- 1.9.2 Relative Error in the Slope -- 1.9.3 Linearized Least-Squares Fitting -- 1.9.4 Caveat for Data Sets with Small N*.
,
1.9.5 Best-Fit to Models with More Than Two Adjustable Parameters -- 1.10 The Absence of Rigorous Mathematics -- Talk Like an Acoustician -- References -- Part I: Vibrations -- Chapter 2: The Simple Harmonic Oscillator -- 2.1 The Undamped Harmonic Oscillator -- 2.1.1 Initial Conditions and the Phasor Representation -- 2.2 The Lumped-Element Approximation -- 2.2.1 Series and Parallel Combinations of Several Springs -- 2.2.2 A Characteristic Speed -- 2.3 Energy -- 2.3.1 The Virial Theorem -- 2.3.2 Rayleighś Method -- 2.3.3 Gravitational Offset -- 2.3.4 Adiabatic Invariance -- 2.4 Damping and Free-Decay -- 2.4.1 Viscous Damping and Mechanical Resistance -- 2.4.2 Free-Decay Frequency and Quality Factor -- 2.4.3 Critical Damping -- 2.4.4 Thermal Equilibrium and Fluctuations -- 2.4.5 Frictional (Coulomb) Damping* -- 2.5 Driven Systems -- 2.5.1 Force-Driven SHO -- 2.5.2 Power Dissipation, the Decibel, and Resonance Bandwidth -- 2.5.3 Resonance Tracking and the Phase-Locked Loop* -- 2.5.4 Transient Response -- 2.5.5 The Electrodynamic Loudspeaker -- 2.5.6 Electrodynamic (Moving-Coil) Microphone -- 2.5.7 Displacement-Driven SHO and Transmissibility -- 2.6 Vibration Sensors -- 2.7 Coupled Oscillators -- 2.7.1 Two Identical Masses with Three Identical Springs -- 2.7.2 Coupled Equations for Identical Masses and Springs -- 2.7.3 Normal Modes and Normal Coordinates -- 2.7.4 Other Initial Conditions -- 2.7.5 General Solutions for Two Masses and Three Springs -- 2.7.6 Driven Oscillators, Level Repulsion, and Beating -- 2.7.7 String of Pearls -- 2.8 The Not-So-Simple (?) Harmonic Oscillator -- Talk Like an Acoustician -- References -- Chapter 3: String Theory -- 3.1 Waves on a Flexible String -- 3.2 Pulse Reflections at a Boundary and the Utility of Phantoms -- 3.3 Normal Modes and Standing Waves -- 3.3.1 Idealized Boundary Conditions.
,
3.3.2 Consonance and Dissonance* -- 3.3.3 Consonant Triads and Musical Scales* -- 3.4 Modal Energy -- 3.4.1 Nature Is Efficient -- 3.4.2 Point Mass Perturbation -- 3.4.3 Heavy Chain Pendulum (Nonuniform Tension)* -- 3.5 Initial Conditions -- 3.5.1 Total Modal Energy -- 3.6 ``Imperfect ́́Boundary Conditions -- 3.6.1 Example: Standing Wave Modes for M/ms = 5 -- 3.6.2 An Algebraic Approximation for the Mass-Loaded String -- 3.6.3 The Resistance-Loaded String* -- 3.7 Forced Motion of a Semi-Infinite String -- 3.8 Forced Motion of a Finite String -- 3.8.1 Displacement-Driven Finite String -- 3.8.2 Mass-Loaded String in the Impedance Model -- 3.8.3 Force-Driven Finite String -- 3.8.4 An Efficient Driver/Load Interaction -- 3.9 ``Iv́e Got the World on a String :́́ Chapter Summary -- Talk Like an Acoustician -- References -- Chapter 4: Elasticity of Solids -- 4.1 Hooke, Young, Poisson, and Fourier -- 4.2 Isotropic Elasticity -- 4.2.1 Bulk Modulus -- 4.2.2 Modulus of Unilateral Compression -- 4.2.3 Shear Modulus -- 4.2.4 Two Moduli Provide a Complete (Isotropic) Description -- 4.3 Real Springs -- 4.3.1 Solids as Springs -- 4.3.2 Flexure Springs -- 4.3.3 Triangularly Tapered Cantilever Spring* -- 4.3.4 Buckling -- 4.3.5 Torsional Springs -- 4.3.6 Coil Springs -- 4.4 Viscoelasticity -- 4.4.1 The Maxwell (Relaxation Time) Model -- 4.4.2 Standard Linear Model (SLM) of Viscoelasticity -- 4.4.3 Complex Stiffnesses and Moduli* -- 4.4.4 Kramers-Kronig Relations -- 4.5 Rubber Springs -- 4.5.1 Effective Modulus -- 4.5.2 Rubber-to-Glass Transition (Type I and Type II Rubbers) -- 4.5.3 Transmissibility of Rubberlike Vibration Isolators -- 4.6 Anisotropic (Crystalline) Elasticity* -- 4.7 There Is More to Stiffness Than Just `` ́́-- Talk Like an Acoustician -- References -- Chapter 5: Modes of Bars -- 5.1 Longitudinal Waves in Thin Bars.
,
5.1.1 Longitudinal Waves in Bulk Solids -- 5.1.2 The Quartz Crystal Microbalance -- 5.1.3 Bodineś ``Sonic Hammer ́́-- 5.2 Torsional Waves in Thin Bars -- 5.3 Flexural Waves in Thin Bars -- 5.3.1 Dispersion -- 5.3.2 Flexural Wave Functions -- 5.3.3 Flexural Standing Wave Frequencies -- 5.3.4 Flexural Standing Wave Mode Shapes -- 5.3.5 Rayleigh Waves* -- 5.4 Resonant Determination of Elastic Moduli -- 5.4.1 Mode-Selective Electrodynamic Excitation and Detection -- 5.4.2 Bar Sample Size and Preparation -- 5.4.3 Measured Resonance Spectra -- 5.4.4 Effective Length Correction for Transducer Mass -- 5.4.5 Modes of a Viscoelastic Bar -- 5.4.6 Resonant Ultrasound Spectroscopy* -- 5.5 Vibrations of a Stiff String* -- 5.6 Harmonic Analysis -- Talk Like an Acoustician -- References -- Chapter 6: Membranes, Plates, and Microphones -- 6.1 Rectangular Membranes -- 6.1.1 Modes of a Rectangular Membrane -- 6.1.2 Modal Degeneracy -- 6.1.3 Density of Modes -- 6.2 Circular Membranes -- 6.2.1 Series Solution to the Circular Wave Equation -- 6.2.2 Modal Frequencies and Density for a Circular Membrane -- 6.2.3 Mode Similarities Illustrating Adiabatic Invariance -- 6.2.4 Normal Modes of Wedges and Annular Membranes* -- 6.2.5 Effective Piston Area for a Vibrating Membrane -- 6.2.6 Normal Mode Frequencies of Tympani -- 6.2.7 Pressure-Driven Circular Membranes -- 6.3 Response of a Condenser Microphone -- 6.3.1 Optimal Backplate Radius -- 6.3.2 Limits on Polarizing Voltages and Electrostatic Forces -- 6.3.3 Electret Condenser Microphone -- 6.4 Vibrations of Thin Plates -- 6.4.1 Normal Modes of a Clamped Circular Plate -- 6.5 Flatland -- Talk Like an Acoustician -- References -- Part II: Waves in Fluids -- Chapter 7: Ideal Gas Laws -- 7.1 Two Ways of Knowing-Phenomenology and Microscopics -- 7.1.1 Microscopic Models -- 7.1.2 Phenomenological Models.
,
7.1.3 Adiabatic Equation of State for an Ideal Gas -- 7.1.4 Adiabatic Temperature Change -- 7.2 Specific Heats of Ideal Gases -- 7.2.1 Monatomic (Noble) Gases -- 7.2.2 Polyatomic Gases -- 7.3 The Fundamental Equations of Hydrodynamics -- 7.3.1 The Continuity Equation -- 7.3.2 The Navier-Stokes (Euler) Equation -- 7.3.3 The Entropy Equation -- 7.3.4 Closure with the Equation of State -- 7.4 Flashback -- Talk Like an Acoustician -- References -- Chapter 8: Nondissipative Lumped Elements -- 8.1 Oscillations About Equilibrium -- 8.2 Acoustical Compliance and the Continuity Equation -- 8.2.1 The Continuity Equation -- 8.2.2 Linearized Continuity Equation -- 8.2.3 Acoustical Compliance -- 8.2.4 The Gas Spring -- 8.3 Hydrostatic Pressure -- 8.4 Inertance and the Linearized Euler Equation -- 8.4.1 The Venturi Tube -- 8.4.2 The Linearized Euler Equation -- 8.4.3 Acoustical Inertance -- 8.4.4 Acoustical Mass -- 8.5 The Helmholtz Resonance Frequency -- 8.5.1 Helmholtz Resonator Network Analysis -- 8.5.2 A 500-mL Boiling Flask -- 8.6 DeltaEC Software -- 8.6.1 Download DeltaEC -- 8.6.2 Getting Started with DeltaEC (Thermophysical Properties) -- 8.6.3 Creating planewave.out -- 8.6.4 Running planewave.out -- 8.6.5 Finding the Resonance Frequencies of planewave.out -- 8.6.6 State Variable Plots (.sp) -- 8.6.7 Modifying planewave.out to Create Flask500.out -- 8.6.8 Interpreting the .out File -- 8.6.9 The RPN Segment -- 8.6.10 Power Flow and Dissipation in the 500 Ml Boiling Flask -- 8.6.11 An ``Effective Length ́́Correction -- 8.6.12 Incremental Plotting and the .ip File -- 8.6.13 So Much More Utility in DeltaEC -- 8.7 Coupled Helmholtz Resonators -- 8.8 The Bass-Reflex Loudspeaker Enclosure -- 8.8.1 Beranekś Box Driven by a Constant Volume Velocity -- 8.8.2 Loudspeaker-Driven Bass-Reflex Enclosure* -- 8.9 Lumped Elements -- Talk like an Acoustician -- References.
,
Chapter 9: Dissipative Hydrodynamics.
Additional Edition:
Print version: Garrett, Steven L. Understanding Acoustics Cham : Springer International Publishing AG,c2020 ISBN 9783030447861
Language:
English
Keywords:
Electronic books.