Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiesbaden : Vieweg+Teubner Verlag
    UID:
    b3kat_BV042444677
    Format: 1 Online-Ressource (416S.)
    ISBN: 9783322948922 , 9783519020813
    Series Statement: Teubner Studienbücher Mathematik
    Note: Dieser Band gliedert sich in Variationsrechnung, Differentialgeometrie und mathematische Grundlagen der Relativitätstheorie. Er richtet sich an Studierende der Physik im Grund- und Hauptstudium sowie an alle, die sich näher mit Variationsrechnung und Relativitätstheorie befassen wollen. Als Einstiegsvoraussetzung reicht im Wesentlichen der in Band 1 behandelte Stoff. Gegenstand der klassischen Variationsrechnung sind Integrale F(v) wie Wirkungsintegral, Bogenlänge oder Flächeninhalt, wobei v eine Funktionenklasse V durchläuft, die hauptsächlich durch Randbedingungen festgelegt ist. Gefragt wird nach notwendigen und hinreichenden Bedingungen dafür, dass eine Funktion u E V ein Minimum von F in V liefert. Notwendig hierfür ist die Stationarität von F an der Stelle u, wofür in Analogie zum Verschwinden der Ableitung 8F(u) = 0 geschrieben wird. Aus dieser ergibt sich eine Differentialgleichung für u, die Euler-Gleichung. In § 2 stellen wir Euler-Gleichungen für einige wichtige Variationsprobleme auf. Für viele Gebiete der theoretischen Physik erweist es sich als vorteilhaft, ein Wirkungsprinzip der Form 8F(u) = 0 an die Spitze zu stellen. Dies ist meistens der einfachste und sicherste Weg, Grundgesetze zu formulieren; darüberhinaus lassen sich aus Invarianzeigenschaften des Wirkungsintegrals auf systematische Weise Erhaltungsgrößen gewinnen. Variationsprinzipien treten in allen Teilen dieses Buchs auf: Hamiltonsches Prinzip für die Punkt- und Kontinuumsmechanik, Fermatsches Prinzip für die geometrische Optik, Hilbertsches Variationsprinzip für die Feldgleichungen und die Maxwellschen Gleichungen, außerdem werden Seifenhäute (Minimalflächen), Kapillaritatsflächen und Geodätische auf Flächen behandelt
    Language: German
    Keywords: Mathematik ; Mathematische Physik ; Lehrbuch
    URL: Volltext  (lizenzpflichtig)
    Author information: Fischer, Helmut 1936-
    Author information: Kaul, Helmut 1936-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages