Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford, England ; : Butterworth-Heinemann,
    UID:
    edoccha_9960161360102883
    Format: 1 online resource (1,510 pages) : , illustrations (some color), tables, graphs
    Edition: Fourth edition.
    ISBN: 0-12-811408-8 , 0-12-811407-X
    Content: Power Electronics Handbook, Fourth Edition, brings together over 100 years of combined experience in the specialist areas of power engineering to offer a fully revised and updated expert guide to total power solutions. Designed to provide the best technical and most commercially viable solutions available, this handbook undertakes any or all aspects of a project requiring specialist design, installation, commissioning and maintenance services. Comprising a complete revision throughout and enhanced chapters on semiconductor diodes and transistors and thyristors, this volume includes renewable resource content useful for the new generation of engineering professionals. This market leading reference has new chapters covering electric traction theory and motors and wide band gap (WBG) materials and devices. With this book in hand, engineers will be able to execute design, analysis and evaluation of assigned projects using sound engineering principles and adhering to the business policies and product/program requirements. Includes a list of leading international academic and professional contributors Offers practical concepts and developments for laboratory test plans Includes new technical chapters on electric vehicle charging and traction theory and motors Includes renewable resource content useful for the new generation of engineering professionals
    Note: Front Cover -- Power Electronics Handbook -- Copyright -- Table of Contents -- Contributors -- Chapter 1: Introduction -- 1.1. Power Electronics Defined -- 1.2. Key Characteristics -- 1.2.1. The Efficiency Objective-The Switch -- 1.2.2. The Reliability Objective-Simplicity and Integration -- 1.3. Trends in Power Supplies -- 1.4. Conversion Examples -- 1.4.1. Single-Switch Circuits -- 1.4.2. The Method of Energy Balance -- 1.5. Tools for Analysis and Design -- 1.5.1. The Switch Matrix -- 1.5.2. Implications of Kirchhoff's Voltage and Current Laws -- 1.5.3. Resolving the Hardware Problem-Semiconductor Devices -- 1.5.4. Resolving the Software Problem-Switching Functions -- 1.5.5. Resolving the Interface Problem-Lossless Filter Design -- 1.6. Sample Applications -- 1.7. Summary -- References -- Section I: Power Electronic Devices -- Chapter 2: Semiconductor Diodes and Transistors -- 2.1. Semiconductor Diode -- 2.1.1. Static Characteristics -- 2.1.2. Dynamic Characteristics -- 2.1.3. Common Types of Diodes -- 2.1.4. Evaluating the Dynamic Characteristics of Real Diodes -- 2.1.5. Series and Parallel Connection of Power Diodes -- 2.1.6. Typical Application of Diodes -- 2.1.6.1. Rectifiers -- 2.1.6.2. Freewheeling -- 2.1.6.3. Voltage Multiplier -- 2.1.7. PSPICE Model -- 2.2. Power Bipolar Transistor -- 2.2.1. Basic Structure and Operation -- 2.2.2. Static Characteristics -- 2.2.3. Safe Operation Area -- 2.2.4. Switching Characteristics -- 2.2.5. Transistor Base Driver Circuits -- 2.2.6. BJT Applications -- 2.2.7. PSPICE Model -- 2.3. Power MOSFET -- 2.3.1. Basic Structure -- 2.3.2. Static Characteristics -- 2.3.2.1. Ohmic Region -- 2.3.2.2. Cut-off Region -- 2.3.2.3. Active Region -- 2.3.3. Switching Characteristics -- 2.3.3.1. Turn-on Analysis -- 2.3.3.2. Turn-off Analysis -- 2.3.4. Safe Operation Area -- 2.3.5. MOSFET Applications. , 2.3.6. PSPICE Model -- 2.4. Insulated Gate Bipolar Transistor -- 2.4.1. Basic Structure -- 2.4.2. Static Characteristics -- 2.4.3. Switching Characteristics -- 2.4.3.1. Turn-on Analysis -- 2.4.3.2. Turn-off Analysis -- 2.4.4. IGBT Applications -- 2.4.5. PSPICE Model -- 2.5. Swtiching evaluation of a Real MOSFET -- 2.5.1. Results for Sw1 ON and Sw2 OFF and Rpot at the Maximum Resistance -- 2.5.2. Results for Sw1 ON and Sw2 OFF and Rpot at the Minimum Resistance -- 2.5.3. Results for Sw1 and Sw2 ON and Rpot at the Maximum Resistance -- 2.5.4. Results for Sw1 and Sw2 OFF and Rpot at the Maximum Resistance -- 2.6. Heatsink Thermal Design for Power Semiconductors -- 2.6.1. Heatsink Design -- 2.7. Transistor Selection Criteria -- References -- Chapter 3: Thyristors -- 3.1. Introduction -- 3.2. Basic Structure and Operation -- 3.3. Static Characteristics -- 3.3.1. Current-Voltage Curves for Thyristors -- 3.3.2. Edge and Surface Terminations -- 3.3.3. Packaging -- 3.4. Dynamic Switching Characteristics -- 3.4.1. Cathode Shorts -- 3.4.2. Anode Shorts -- 3.4.3. Amplifying Gate -- 3.4.4. Temperature Dependencies -- 3.5. Thyristor Parameters -- 3.6. Types of Thyristors -- 3.6.1. SCRs and GTOs -- 3.6.1.1. On-State Characteristics -- 3.6.1.2. Off-State Characteristics -- 3.6.1.3. Rate of Rise of Off-State Voltage (dvD/dt) -- 3.6.1.4. Gate Triggering Characteristics -- 3.6.1.5. GTO Switching Phases -- Turn-on -- On-state -- Turn-off -- Off-state period -- 3.6.1.6. GTO SPICModel -- 3.6.2. MOS-Controlled Thyristors -- 3.6.2.1. Equivalent Circuit and Switching Characteristics -- 3.6.2.2. Turn-On and Turn-Off -- 3.6.2.3. Comparison of MCT and Other Power Devices -- 3.6.2.4. Protection of MCTs -- Paralleling of MCTs -- Overcurrent protection -- Snubbers -- Simulation model of an MCT -- 3.6.3. Generation-1 and Generation-2 MCTs -- 3.6.4. N-channel MCT. , 3.6.5. Base Resistance-Controlled Thyristor [28] -- 3.6.6. MOS Turn-off Thyristor [29] -- 3.6.7. Static Induction Thyristors -- 3.6.8. Optically Triggered Thyristors -- 3.6.9. Bi-directional Controlled Thyristors -- 3.7. Gate Drive Requirements -- 3.7.1. Snubber Circuits -- 3.7.2. Gate Circuits -- 3.8. Applications -- 3.8.1. DC-AC Utility Inverters -- 3.8.2. Motor Control -- 3.8.3. VAR Compensators and Static Switching Systems -- 3.8.4. Lighting Control Circuits -- References -- Chapter 4: Static Induction Devices -- 4.1. Introduction -- 4.2. Theory of Static Induction Devices -- 4.3. Characteristics of SIT -- 4.4. Bipolar Mode Operation of SI devices (BSIT) -- 4.5. Emitters for Static Induction Devices -- 4.6. Static Induction Diode -- 4.7. Lateral Punch-Through Transistor -- 4.8. Static Induction Transistor Logic -- 4.9. BJT Saturation Protected by SIT -- 4.10. Static Induction MOS Transistor -- 4.11. Space Charge Limiting Load (SCLL) -- 4.12. Power MOS Transistors -- 4.13. Static Induction Thyristor -- 4.14. Gate Turn Off Thyristor -- References -- Chapter 5: SiC and GaN Power Semiconductor Devices -- 5.1. Background -- 5.2. Silicon Carbide and Gallium Nitride Materials -- 5.2.1. Silicon Carbide Polytypes -- 5.2.2. Gallium Nitride Crystal Structures -- 5.2.2.1. Silicon Carbide and Gallium Nitride Physical and Electrical Properties -- 5.2.2.2. Critical Electric Field -- 5.2.2.3. Intrinsic Carrier Concentration -- 5.2.2.4. Saturated Drift Velocity -- 5.2.2.5. Thermal Stability -- 5.2.2.6. Coefficient of Thermal Expansion -- 5.2.2.7. Figure of Merit -- FOM for materials and technology -- FOM for devices -- 5.3. SiC Power Devices -- 5.3.1. Introduction -- 5.3.2. SiC Power Diodes -- 5.3.2.1. SiC Schottky Diode -- 5.3.2.2. SiC PiN Diode -- 5.3.2.3. SiC Junction Barrier Schottky Diode -- 5.3.3. SiC MOSFET -- 5.3.4. SiC JFET -- 5.3.5. SiC BJT. , 5.3.6. SiC IGBT -- 5.3.7. SiC Thyristor -- 5.4. GaN Power Devices -- 5.4.1. Lateral GaN Schottky Barrier Diodes -- 5.4.2. Vertical GaN PiN Diodes -- 5.4.3. GaN JFET -- 5.4.3.1. Vertical JFET -- 5.4.3.2. Lateral Channel JFET With Vertical Drift Region -- 5.4.4. GaN MOSFET -- 5.4.4.1. Vertical Trench MOSFET -- 5.4.4.2. Lateral MOSFET -- 5.4.5. GaN HEMT -- 5.4.5.1. GaN HEMT Structure -- 5.4.5.2. GaN HEMT DC Characteristics -- 5.4.5.3. GaN HEMT Design Considerations -- Appendix. Lightly Doped Drift Region Thickness -- References -- Further Reading -- Chapter 6: Power Electronic Modules -- 6.1. Introduction -- 6.2. Discrete Power Devices Versus Power Modules -- 6.3. An Example of Power Module -- 6.4. Manufacturing Process -- 6.4.1. Semiconductor Chips -- 6.4.2. Die Attach -- 6.4.3. Wire Bonds -- 6.4.4. DBC Substrate -- 6.4.5. Baseplate -- 6.5. Types of Power Electronic Modules -- 6.5.1. A Survey of Power Electronic Module Topologies -- 6.5.2. Power Semiconductor Devices Used in Power Electronic Modules -- 6.5.3. SiC Power Semiconductor Devices in Power Modules -- 6.6. Thermal Management of Power Modules -- 6.6.1. The Purpose of Thermal Management -- 6.6.2. Equivalent Thermal Network of Power Module -- 6.6.3. Cooling Solutions for Power Module -- 6.6.3.1. Air Cooling -- 6.6.3.2. Liquid Cooling -- 6.6.3.3. Double-Sided Cooling -- 6.6.3.4. Double-Sided Cooling Using the DBC Structure -- 6.6.3.5. Double-Sided Cooling Using the Press-Pack Structure -- 6.7. Reliability of Power Modules -- 6.7.1. Reliability Tests [17] -- 6.7.1.1. Thermal Cycling Test -- 6.7.1.2. Power Cycling Test -- 6.8. Design Guidelines and Considerations -- 6.8.1. Bypass Capacitor Considerations -- 6.8.2. Gate Driver Design Considerations -- 6.8.3. Gate Kelvin Contacts -- 6.8.4. Other Design Considerations -- References -- Further Reading -- Section II: Power Conversion. , Chapter 7: Diode Rectifiers -- 7.1. Introduction -- 7.2. Single-Phase Diode Rectifiers -- 7.2.1. Single-Phase Half-Wave Rectifiers -- 7.2.2. Single-Phase Full-Wave Rectifiers -- 7.2.3. Performance Parameters -- 7.2.3.1. Voltage Relationships -- 7.2.3.2. Current Relationships -- 7.2.3.3. Rectification Ratio -- 7.2.3.4. Form Factor -- 7.2.3.5. Ripple Factor -- 7.2.3.6. Transformer Utilization Factor -- 7.2.3.7. Harmonics -- 7.2.4. Design Considerations -- 7.3. Three-Phase Diode Rectifiers -- 7.3.1. Three-Phase Star Rectifiers -- 7.3.1.1. Basic Three-Phase Star Rectifier Circuit -- 7.3.1.2. Three-Phase Interstar Rectifier Circuit -- 7.3.1.3. Three-Phase Double-Star Rectifier With Interphase Transformer -- 7.3.2. Three-Phase Bridge Rectifiers -- 7.3.3. Operation of Rectifiers With Finite Source Inductance -- 7.4. Poly-Phase Diode Rectifiers -- 7.4.1. Six-Phase Star Rectifier -- 7.4.2. Six-Phase Series Bridge Rectifier -- 7.4.3. Six-Phase Parallel Bridge Rectifier -- 7.5. Filtering Systems in Rectifier Circuits -- 7.5.1. Inductive-Input DC Filters -- 7.5.1.1. Voltage and Current Waveforms of Full-Wave Rectifier With Inductor-Input DC Filter -- 7.5.1.2. Critical Inductance LC -- 7.5.1.3. Determining the Input Inductance for a Given Ripple Factor -- 7.5.1.4. Harmonics of the Input Current -- 7.5.2. Capacitive-Input DC Filters -- 7.5.2.1. Inrush Current -- 7.6. High-Frequency Diode Rectifier Circuits -- 7.6.1. Forward Rectifier Diode, Flywheel Diode, and Magnetic-Reset Clamping Diode in a Forward Converter -- 7.6.1.1. Ideal Circuit -- 7.6.1.2. Circuit Using Ultra-Fast Diodes -- 7.6.1.3. Circuit Using Schottky Diodes -- 7.6.1.4. Circuit With Practical Transformer -- 7.6.1.5. Circuit With Snubber Across The Transformer -- 7.6.1.6. Practical Circuit -- 7.6.2. Flyback Rectifier Diode and Clamping Diode in a Flyback Converter -- 7.6.2.1. Ideal Circuit. , 7.6.2.2. Practical Circuit.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages