Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Amsterdam, [Netherlands] :Academic Press,
    UID:
    edoccha_9960161407502883
    Format: 1 online resource (630 pages)
    Edition: 2nd ed.
    ISBN: 0-12-801906-9
    Content: This book presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory.--
    Note: Front Cover -- Mathematics for Neuroscientists -- Copyright -- MATHEMATICS FOR NEUROSCIENTISTS -- MATHEMATICS FOR NEUROSCIENTISTS -- Contents -- Preface to the 1st Edition -- Preface to the 2nd Edition -- 1 Introduction -- 1.1 How to Use This Book -- 1.2 Brain Facts Brief -- 1.3 Mathematical Preliminaries -- 1.4 Units -- 1.5 Sources -- 2 The Passive Isopotential Cell -- 2.1 Introduction -- 2.2 The Nernst Potential -- 2.3 Membrane Conductance -- 2.4 Membrane Capacitance & -- Current Balance -- 2.5 Synaptic Conductance -- 2.6 Summary and Sources -- 2.7 Exercises -- 3 Differential Equations -- 3.1 Exact Solution -- 3.2 Moment Methods* -- 3.3 The Laplace Transform* -- 3.4 Numerical Methods -- 3.5 Synaptic Input -- 3.6 Summary and Sources -- 3.7 Exercises -- 4 The Active Isopotential Cell -- 4.1 The Delayed Recti er Potassium Channel -- 4.2 The Sodium Channel -- 4.3 The Hodgkin-Huxley Equations -- 4.4 The Transient Potassium Channel* -- 4.5 The Sodium-Potassium Pump* -- 4.6 Summary and Sources -- 4.7 Exercises -- 5 The Quasi-Active Isopotential Cell -- 5.1 The Quasi-Active Model -- 5.2 Numerical Methods -- 5.3 Exact Solution via Eigenvector Expansion -- 5.4 A Persistent Sodium Current* -- 5.5 A Nonspeci c Cation Current that is Activated by Hyperpolarization* -- 5.6 Linearization of the Sodium-Potassium Pump* -- 5.7 Summary and Sources -- 5.8 Exercises -- 6 The Passive Cable -- 6.1 The Discrete Passive Cable Equation -- 6.2 Exact Solution via Eigenvector Expansion -- 6.3 Numerical Methods -- 6.4 The Passive Cable Equation -- 6.5 Synaptic Input -- 6.6 Summary and Sources -- 6.7 Exercises -- 7 Fourier Series and Transforms -- 7.1 Fourier Series -- 7.2 The Discrete Fourier Transform -- 7.3 The Fourier Transform -- 7.4 Reconciling the Discrete and Continuous Fourier Transforms -- 7.5 Summary and Sources -- 7.6 Exercises -- 8 The Passive Dendritic Tree. , 8.1 The Discrete Passive Tree -- 8.2 Eigenvector Expansion -- 8.3 Numerical Methods -- 8.4 The Passive Dendrite Equation -- 8.5 The Equivalent Cylinder* -- 8.6 Branched Eigenfunctions* -- 8.7 Summary and Sources -- 8.8 Exercises -- 9 The Active Dendritic Tree -- 9.1 The Active Uniform Cable -- 9.2 On the Interaction of Active Uniform Cables* -- 9.3 The Active Nonuniform Cable -- 9.4 The Quasi-Active Cable* -- 9.5 The Active Dendritic Tree -- 9.6 Summary and Sources -- 9.7 Exercises -- 10 Extracellular Potential -- 10.1 Maxwell's Equations -- 10.2 The Wave Equation -- 10.3 From Maxwell to Laplace -- 10.4 The Solution to Laplace's Equation -- 10.5 Extracellular Potential Near a Passive Cable -- 10.6 Extracellular Potential Near Active Cables -- 10.7 Summary and Sources -- 10.8 Exercises -- 11 Reduced Single Neuron Models -- 11.1 The Leaky Integrate-and-Fire Neuron -- 11.2 Bursting Neurons -- 11.3 Simpli ed Models of Bursting Neurons -- 11.4 Summary and Sources -- 11.5 Exercises -- 12 Probability and Random Variables -- 12.1 Events and Random Variables -- 12.2 Binomial Random Variables -- 12.3 Poisson Random Variables -- 12.4 Gaussian Random Variables -- 12.5 Cumulative Distribution Functions -- 12.6 Conditional Probabilities* -- 12.7 Sum of Independent Random Variables* -- 12.8 Transformation of Random Variables* -- 12.9 Random Vectors* -- 12.10 Exponential and Gamma Distributed Random Variables -- 12.11 The Homogeneous Poisson Process -- 12.12 Summary and Sources -- 12.13 Exercises -- 13 Synaptic Transmission and Quantal Release -- 13.1 Basic Synaptic Structure and Physiology -- 13.2 Discovery of Quantal Release -- 13.3 Compound Poisson Model of Synaptic Release -- 13.4 Comparison with Experimental Data -- 13.5 Quantal Analysis at Central Synapses -- 13.6 Facilitation, Potentiation and Depression of Synaptic Transmission. , 13.7 Models of Short-Term Synaptic Plasticity -- 13.8 Summary and Sources -- 13.9 Exercises -- 14 Neuronal Calcium Signaling* -- 14.1 Voltage Gated Calcium Channels -- 14.2 Diffusion, Buffering and Extraction of Cytosolic Calcium -- 14.3 Calcium Release from the Endoplasmic Reticulum -- 14.4 Regulation of Calcium in Spines -- 14.5 Spinal Calcium and Bidirectional Synaptic Plasticity -- 14.6 Presynaptic Calcium and Transmitter Release -- 14.7 Summary and Sources -- 14.8 Exercises -- 15 Neurovascular Coupling, the BOLD Signal and MRI -- 15.1 The Metabolic Cost of Neural Signaling -- 15.2 Astrocytes -- 15.3 Smooth Muscle -- 15.4 Endothelium -- 15.5 The Neurovascular Unit -- 15.6 How Blood Distorts an Applied Magnetic Field -- 15.7 Nuclear Magnetic Resonance and the BOLD Signal -- 15.8 The Hemodynamic Response -- 15.9 Magnetic Resonance Imaging -- 15.10 Summary and Sources -- 15.11 Exercises -- 16 The Singular Value Decomposition and Applications* -- 16.1 The Singular Value Decomposition -- 16.2 Principal Component Analysis and Spike Sorting -- 16.3 Synaptic Plasticity and Principal Components -- 16.4 Neuronal Model Reduction via Balanced Truncation -- 16.5 Summary and Sources -- 16.6 Exercises -- 17 Quanti cation of Spike Train Variability -- 17.1 Interspike Interval Histograms and Coef cient of Variation -- 17.2 Refractory Period -- 17.3 Spike Count Distribution and Fano Factor -- 17.4 Renewal Processes -- 17.5 Return Maps and Serial Correlation Coef cients -- 17.6 Summary and Sources -- 17.7 Exercises -- 18 Stochastic Processes -- 18.1 De nition and General Properties -- 18.2 Gaussian Processes -- 18.3 Point Processes -- 18.4 The Inhomogeneous Poisson Process -- 18.5 Spectral Analysis -- 18.6 Summary and Sources -- 18.7 Exercises -- 19 Membrane Noise* -- 19.1 Two-State Channel Model -- 19.2 Multi-State Channel Models. , 19.3 The Ornstein-Uhlenbeck Process -- 19.4 Synaptic Noise -- 19.5 Summary and Sources -- 19.6 Exercises -- 20 Power and Cross-Spectra -- 20.1 Cross-Correlation and Coherence -- 20.2 Estimator Bias and Variance -- 20.3 Numerical Estimate of the Power Spectrum* -- 20.4 Summary and Sources -- 20.5 Exercises -- 21 Natural Light Signals and Phototransduction -- 21.1 Wavelength and Intensity -- 21.2 Spatial Properties of Natural Light Signals -- 21.3 Temporal Properties of Natural Light Signals -- 21.4 A Model of Phototransduction -- 21.5 Summary and Sources -- 21.6 Exercises -- 22 Firing Rate Codes and Early Vision -- 22.1 De nition of Mean Instantaneous Firing Rate -- 22.2 Visual System and Visual Stimuli -- 22.3 Spatial Receptive Field of Retinal Ganglion Cells -- 22.4 Characterization of Receptive Field Structure -- 22.5 Spatio-Temporal Receptive Fields -- 22.6 Static Non-Linearities* -- 22.7 Summary and Sources -- 22.8 Exercises -- 23 Models of Simple and Complex Cells -- 23.1 Simple Cell Models -- 23.2 Non-Separable Receptive Fields -- 23.3 Receptive Fields of Complex Cells -- 23.4 Motion-Energy Model -- 23.5 Hubel-Wiesel Model -- 23.6 Multiscale Representation of Visual Information -- 23.7 Summary and Sources -- 23.8 Exercises -- 24 Models of Motion Detection -- 24.1 HRC Model of Motion Detection -- 24.2 Responses to Moving Stimuli -- 24.3 Properties of the Correlation Model -- 24.4 Equivalence with the Motion-Energy Model -- 24.5 Beyond Correlation in Motion Detection -- 24.6 Summary and Sources -- 24.7 Exercises -- 25 Stochastic Estimation Theory -- 25.1 Minimum Mean-Square Error Estimation -- 25.2 Estimation of Gaussian Signals* -- 25.3 Linear Non-Linear (LN) Models* -- 25.4 Summary and Sources -- 25.5 Exercises -- 26 Reverse-Correlation and Spike Train Decoding -- 26.1 Reverse-Correlation -- 26.2 Stimulus Reconstruction. , 26.3 Summary and Sources -- 26.4 Exercises -- 27 Signal Detection Theory -- 27.1 Testing Hypotheses -- 27.2 Ideal Decision Rules -- 27.3 ROC Curves* -- 27.4 Multi-Dimensional Gaussian Signals* -- 27.5 Fisher Linear Discriminant* -- 27.6 Summary and Sources -- 27.7 Exercises -- 28 Relating Neuronal Responses and Psychophysics -- 28.1 Single Photon Detection -- 28.2 Signal Detection Theory and Psychophysics -- 28.3 Motion Detection -- 28.4 Summary and Sources -- 28.5 Exercises -- 29 Population Codes* -- 29.1 Cartesian Coordinate Systems -- 29.2 Overcomplete Representations -- 29.3 Frames -- 29.4 Maximum Likelihood -- 29.5 Estimation Error and Cramer-Rao Bound* -- 29.6 Population Coding in the Superior Colliculus -- 29.7 Summary and Sources -- 29.8 Exercises -- 30 Neuronal Networks -- 30.1 Perceptrons -- 30.2 Hop eld Networks -- 30.3 Integrate and Fire Networks -- 30.4 Integrate and Fire Networks with Plastic Synapses -- 30.5 Formation of the Grid Cell Network via STDP -- 30.6 Hodgkin-Huxley Based Networks -- 30.7 Hodgkin-Huxley Based Networks with Plastic Synapses -- 30.8 Rate Based Networks -- 30.9 Brain Maps and Self-Organizing Maps -- 30.10 Summary and Sources -- 30.11 Exercises -- 31 Solutions to Exercises -- 31.1 Chapter 2 -- 31.2 Chapter 3 -- 31.3 Chapter 4 -- 31.4 Chapter 5 -- 31.5 Chapter 6 -- 31.6 Chapter 7 -- 31.7 Chapter 8 -- 31.8 Chapter 9 -- 31.9 Chapter 10 -- 31.10 Chapter 11 -- 31.11 Chapter 12 -- 31.12 Chapter 13 -- 31.13 Chapter 14 -- 31.14 Chapter 15 -- 31.15 Chapter 16 -- 31.16 Chapter 17 -- 31.17 Chapter 18 -- 31.18 Chapter 19 -- 31.19 Chapter 20 -- 31.20 Chapter 21 -- 31.21 Chapter 22 -- 31.22 Chapter 23 -- 31.23 Chapter 24 -- 31.24 Chapter 25 -- 31.25 Chapter 26 -- 31.26 Chapter 27 -- 31.27 Chapter 28 -- 31.28 Chapter 29 -- 31.29 Chapter 30 -- Bibliography -- Index -- Back Cover.
    Additional Edition: ISBN 0-12-801895-X
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages