UID:
edoccha_9960877813302883
Format:
1 online resource (908 pages)
ISBN:
9780128232095
Content:
Mass Transport in Magmatic Systems describes the properties and processes of these natural occurrences, including a description and discussions of how properties can be used for quantitative description of mass and energy transport on, and in, Earth and terrestrial planets. As the experimentally obtained chemical and physical properties of magma is scattered across literature, this book provides a comprehensive volume on the topic. Moreover, links between properties and processes are rarely appreciated. This makes it challenging for a non-experimentalist to access, evaluate, and apply such data.
Note:
Includes index.
,
Front Cover -- Mass Transport in Magmatic Systems -- Mass Transport in Magmatic Systems -- Copyright -- Contents -- Preface -- 1 - Melting in the Earth's interior: solidus and liquidus relations -- 1.1 Introduction -- 1.2 Premelting -- 1.3 Melting of peridotite -- 1.3.1 Peridotite melting without volatiles -- 1.3.2 Solidus phase assemblage and pressure -- 1.3.3 Peridotite melting with volatiles -- 1.3.3.1 Peridotite-H2O -- 1.3.3.2 Dehydration on the peridotite solidus -- 1.3.3.3 Peridotite-CO2 melting -- 1.3.3.4 Peridotite-C-O-H melting -- 1.3.3.4.1 Peridotite: H2O-CO2 -- 1.3.3.4.2 Peridotite-C-O-H under reducing conditions -- 1.3.3.5 Magmatic processes in peridotite-C-O-H environments -- 1.4 Melting of basalt -- 1.4.1 Basalt/gabbro melting without volatiles -- 1.4.2 Basalt/gabbro-H2O -- 1.4.2.1 Dehydration melting on the basalt solidus -- 1.4.2.2 Basaltic magma and redox conditions -- 1.4.3 Basalt/gabbro-CO2 -- 1.4.4 Basalt with multicomponent fluid -- 1.5 Melting of andesite -- 1.5.1 Andesite-H2O -- 1.5.2 Andesite melting and H2O activity -- 1.5.3 Melting of sediment -- 1.5.4 The role of oxygen fugacity -- 1.6 Rhyolite melting -- 1.6.1 Rhyolite-H2O -- 1.6.2 H2O-undersaturated rhyolite/granite melting -- 1.6.3 The role of oxygen fugacity -- 1.7 Concluding remarks -- References -- 2 - Melting in the Earth's interior: melting phase relations between the solidus and liquidus -- 2.1 Introduction -- 2.2 Melting interval of mantle peridotite without volatiles -- 2.2.1 Degree of melting -- 2.2.2 Melt composition in the melting interval -- 2.2.3 Upper mantle magma genesis without volatiles -- 2.3 Melting interval of mantle peridotite with volatiles -- 2.3.1 Degree of melting: Peridotite-H2O -- 2.3.2 Melt composition in the peridotite-H2O melting interval -- 2.3.3 Upper mantle magma genesis with H2O -- 2.3.4 Degree of melting: Peridotite-CO2.
,
2.3.5 Melt composition in the peridotite-CO2 melting interval -- 2.3.6 Melting of peridotite with halogens, CO2 and/or H2O -- 2.3.7 Peridotite-CO2 melting and upper mantle magma genesis -- 2.3.8 Peridotite-C-O-H melting and melt compositions -- 2.3.8.1 Mantle melting melting in peridotite-H2O-CO2 -- 2.3.8.2 Melting in peridotite-C-O-H under reducing conditions -- 2.4 Melting interval of basalt -- 2.4.1 Redox variations at ambient pressure -- 2.4.2 High-pressure melting without volatiles -- 2.4.3 Melting of basalt with volatiles -- 2.4.3.1 Basalt-H2O -- 2.4.3.2 Magma genesis in hydrous basalt systems -- 2.4.3.3 Basalt-CO2 -- 2.5 Melting interval of andesite -- 2.6 Melting interval of granite -- 2.6.1 H2O-undersaturated melting -- 2.6.2 Melting with variable redox conditions -- 2.7 Concluding remarks -- References -- 3 - Element distribution during melting and crystallization -- 3.1 Introduction -- 3.2 Principles -- 3.3 Trace element substitution in melts and minerals -- 3.3.1 Trace element substitution in minerals -- 3.3.2 Trace element substitution in melts -- 3.3.2.1 Melt structural effects, NBO/T -- 3.3.2.2 Melt structural effects, site preference -- 3.3.2.3 Melt structural effects, Al⇔Si exchange -- 3.4 Element partitioning, intensive, and extensive variables -- 3.4.1 Olivine-melt -- 3.4.1.1 Olivine-melt partitioning and temperature -- 3.4.1.2 Olivine-melt partitioning and pressure -- 3.4.1.3 Olivine-melt partitioning and redox conditions -- 3.4.2 Plagioclase-melt -- 3.4.2.1 Plagioclase-melt partitioning and composition/structure -- 3.4.2.2 Plagioclase-melt partitioning and temperature -- 3.4.2.3 Plagioclase-melt partitioning and pressure -- 3.4.2.4 Plagioclase-melt partitioning and H2O content -- 3.4.2.5 Plagioclase-melt partitioning and redox conditions -- 3.4.3 Clinopyroxene-melt.
,
3.4.3.1 Clinoyroxene-melt partitioning and composition/structure -- 3.4.3.2 Clinopyroxene-melt partitioning and temperature -- 3.4.3.3 Clinoyroxene-melt partitioning and pressure -- 3.4.3.4 Clinopyroxene-melt partitioning and redox conditions -- 3.4.4 Orthopyroxene-melt -- 3.4.4.1 Orthopyroxene-melt partitioning and composition/structure -- 3.4.4.2 Orthopyroxene-melt partitioning and temperature -- 3.4.4.3 Orthopyroxene-melt partitioning and pressure -- 3.4.4.4 Orthopyroxene-melt partitioning and redox conditions -- 3.4.5 Garnet-melt -- 3.4.5.1 Garnet-melt partitioning and composition/structure -- 3.4.5.2 Garnet-melt partitioning and temperature -- 3.4.5.3 Garnet-melt partitioning and pressure -- 3.4.6 Amphibole-melt -- 3.4.6.1 Amphibole-melt partitioning and composition/structure -- 3.4.6.2 Amphibole-melt partitioning and temperature -- 3.4.6.3 Amphibole-melt partitioning and pressure -- 3.4.6.4 Amphibole-melt partitioning and redox conditions -- 3.4.7 Other mineral-melt pairs -- 3.5 Mineral-melt partitioning and igneous processes -- 3.5.1 Melting models -- 3.5.2 Variable partition coefficients -- 3.6 Concluding remarks -- References -- 4 - Energetics of melts and melting in magmatic systems -- 4.1 Introduction -- 4.2 Energetics of melting -- 4.2.1 Thermodynamics of premelting -- 4.2.1.1 Diopside (CaMgSi2O6) -- 4.2.1.2 Pseudowollastonite (α-CaSiO3) -- 4.2.1.3 Other crystalline metasilicates [Na2SiO3 (NS) and Li2SiO3 (LS)] -- 4.2.1.4 Protoenstatite (MgSiO3) -- 4.2.1.5 Pyrosilicates: gehlenite and åkermannite (Ca2Al2SiO7, Ca2MgSi2O7) -- 4.2.1.6 Orthosilicates/germanates: forsterite (Mg2SiO4) and CaMgGeO4 -- 4.2.1.7 Tectosilicates: cristobalite (SiO2), nepheline/carnegieite (NaAlSiO4), and anorthite (CaAl2Si2O8) -- 4.2.1.8 Other compositions -- 4.2.2 Enthalpy and entropy of fusion -- 4.2.2.1 Enthalpy of fusion in magmatic systems.
,
4.2.2.2 Fusion of silica polymorphs (SiO2) -- 4.2.2.3 Fusion of metal oxide-SiO2 compounds -- 4.2.2.4 Fusion of aluminosilicates -- 4.2.2.4.1 Fusion of peralkaline aluminosilicates -- 4.3 Heat content, heat capacity, and entropy of silicate melts and magma -- 4.3.1 Heat capacity and entropy of magmatic liquids -- 4.3.1.1 Volatiles, heat capacity, and entropy of magmatic liquids -- 4.3.2 Heat capacity, entropy, and silicate melt polymerization in metal oxide-SiO2 systems -- 4.3.3 Heat capacity and entropy in Al-bearing systems -- 4.3.4 Heat capacity and entropy in Fe- and Ti-bearing melt systems -- 4.3.5 Thermodynamics of mixing and solution -- 4.3.5.1 Activity-composition relationships -- 4.3.5.2 Energetics of mixing -- 4.4 Thermodynamics of melts and liquidus phase relations -- 4.5 Concluding remarks -- References -- 5 - Structure of magmatic liquids -- 5.1 Introduction -- 5.2 Glass versus melt and glass transition -- 5.3 Silicate melt and glass structure -- 5.3.1 Degree of silicate polymerization, NBO/T -- 5.3.1.1 Melt properties and degree of melt polymerization (NBO/T) -- 5.3.2 Si-O-Al bonding and charge-balance of tetrahedrally coordinated Al3+ -- 5.3.2.1 (Al,Si) mixing and melt and magma properties -- 5.3.3 Silicate speciation (Qn-species) -- 5.3.3.1 Silicate (Qn)-species and temperature -- 5.3.3.2 Silicate (Qn)-species, cation coordination, and pressure -- 5.3.3.3 Silicate (Qn)-species and cation ordering -- 5.3.4 Al3+ substitution for Si4+ in magmatic systems -- 5.3.4.1 Qn-species, Al-distribution, and properties of magmatic liquids -- 5.3.5 Other tetrahedrally coordinated cations (P5+ and Ti4+) -- 5.4 Iron in magmatic liquids -- 5.4.1 Redox relations of Fe3+ and Fe2+ -- 5.4.1.1 Modeling redox ratio of iron in magmatic liquids -- 5.4.2 Structural role of iron in magmatic systems -- 5.4.2.1 Fe3+ in magmatic liquids.
,
5.4.2.2 Fe2+ in magmatic liquids -- 5.4.3 Magma properties and redox ratio of iron -- 5.5 Concluding remarks -- References -- 6 - Structure and properties of fluids -- 6.1 Introduction -- 6.2 Fluid/melt partitioning of volatile components -- 6.2.1 Fluid/melt partitioning of H2O -- 6.2.2 Fluid/melt partitioning of CO2 -- 6.2.3 Fluid/melt partitioning of chlorine -- 6.2.4 Fluid/melt partitioning of fluorine -- 6.2.5 Fluid/melt partitioning of bromine and iodine -- 6.2.6 Fluid/melt partitioning of sulfur -- 6.3 Structure and properties of H2O in fluids -- 6.3.1 Structure of liquid and supercritical H2O -- 6.3.1.1 Experimentally determined structure -- 6.3.1.2 Numerical modeling of structure -- 6.3.2 Properties of liquid and supercritical H2O -- 6.3.2.1 Thermodynamic properties and equations of state of H2O -- 6.3.2.1.1 Experimental data -- 6.3.2.1.2 Numerical modeling -- 6.3.3 H2O-NaCl -- 6.3.3.1 Structure of H2O-NaCl fluid -- 6.3.3.2 Properties of H2O-Chloride fluid -- 6.3.4 H2O-C-O-H -- 6.3.4.1 H2O-CO2 -- 6.3.4.2 H2O-CH4 -- 6.3.5 H2O-S-O-H -- 6.4 Solubility behavior in fluid: H2O-SiO2 -- 6.4.1 Solubility of SiO2 in H2O -- 6.4.2 Solubility mechanism of SiO2 in H2O -- 6.4.3 Properties of H2O-SiO2 fluid -- 6.4.4 H2O-SiO2-NaCl -- 6.5 Solubility behavior in fluid: H2O-SiO2-MgO -- 6.5.1 Solubility of MgO-SiO2 in H2O -- 6.5.2 Solubility mechanism of MgO-SiO2 in H2O -- 6.5.3 MgO-SiO2 solubility in saline solutions -- 6.5.4 Properties of MgO-SiO2-H2O fluid -- 6.6 Solubility behavior in fluid: H2O-Al2O3(-NaCl-KOH-SiO2) -- 6.6.1 Al2O3-H2O with and without halogens -- 6.6.2 H2O-Al2O3-alkali aluminosilicate with and without halogens -- 6.7 Minor and trace elements in aqueous fluid -- 6.7.1 Ti solubility -- 6.7.2 Zr solubility -- 6.7.3 Salinity of aqueous solutions and trace element solubility -- 6.7.3.1 U and Th solubility -- 6.7.3.2 Cr3+ solubility.
,
6.7.3.3 Molybdenum solubility.
Additional Edition:
Print version: Mysen, Bjorn Mass Transport in Magmatic Systems San Diego : Elsevier,c2022 ISBN 9780128212011
Language:
English