UID:
edoccha_9960943213402883
Format:
1 online resource (298 pages)
ISBN:
3-031-12470-7
Series Statement:
Advances in Material Research and Technology
Note:
Intro -- Preface -- Contents -- 1 Basic Aspects of Design and Operation of All-Solid-State Batteries -- 1.1 Introduction -- 1.2 Battery Design -- 1.2.1 Electrode Materials -- 1.2.2 Electrolyte Materials -- 1.2.3 Different Battery Designs -- 1.3 Processing Techniques for ASSBs -- 1.3.1 Wet Coating Process -- 1.3.2 Extrusion Process Devoid of Solvent -- 1.3.3 Printing -- 1.3.4 Pressing -- 1.3.5 Thin-Film Deposition -- 1.4 Interfacial Challenges for Full Cell Development -- 1.4.1 Interfaces at Composite Solid Cathodes -- 1.4.2 Interfaces at Li Metal and Electrolyte in Solid-State Batteries -- 1.4.3 Interfaces at Current Collector -- 1.5 Conclusion -- References -- 2 A Glimpse of Battery Parameters and State-of-the-Art Characterization Techniques -- 2.1 Introduction -- 2.2 A Brief on Battery Parameters -- 2.2.1 Performance Parameters -- 2.2.2 Component Parameters -- 2.3 Synchrotron X-ray Techniques -- 2.3.1 Operando X-ray Diffraction (XRD) -- 2.3.2 X-ray Photoelectron Spectroscopy -- 2.3.3 Operando X-ray Absorption Spectroscopy -- 2.4 Neutron Scattering Techniques -- 2.4.1 Neutron Powder Diffraction (NPD) -- 2.4.2 Neutron Depth Profiling (NDP) -- 2.4.3 Quasi-Elastic Neutron Scattering (QENS) and Inelastic Neutron Scattering (INS) -- 2.4.4 Neutron Reflectometry (NR) -- 2.4.5 Small Angle Neutron Scattering (SANS) -- 2.5 Solid-State Nuclear Magnetic Resonance (SS NMR) -- 2.5.1 Magic-Angle Spinning (MAS) NMR -- 2.5.2 Magnetic Resonance Imaging (MRI) NMR -- 2.5.3 Two-Dimensional Exchange Spectroscopy (2D EXSY) NMR -- 2.6 Summary -- References -- 3 Prospective Anodes for Solid-State Lithium-Ion Battery -- 3.1 Introduction -- 3.2 Operating Principles of Li-Ion Batteries -- 3.3 Technological Evolution of Lithium-Ion Batteries -- 3.4 Carbonaceous Materials and Its Composite as Anode for Li-Ion Batteries.
,
3.4.1 Carbonaceous Materials and Its Composite as Anode for Solid-State Li-ion Batteries -- 3.5 Lithium Metal Anodes for Solid-State Li-Ion Batteries -- 3.5.1 Solid-State Electrolytes -- 3.5.2 Artificial Coating Layer or Interlayer Modification for Stable Li Anode -- 3.5.3 Composite Electrode Design for Stable Li Anode -- 3.6 Alloying Materials as Anodes for ASSLBs -- 3.7 Transition Metal Oxides as Anode for ASSLBs -- 3.8 Summary and Future Scopes -- References -- 4 Prospective Cathode Materials for All-Solid-State Batteries -- 4.1 Introduction -- 4.2 Basic Principles of Lithium-Ion Batteries (LIBs) -- 4.2.1 Working Principle of LIBs -- 4.2.2 Requirements of Cathode Active Materials -- 4.3 Cathode Material for ASSLIB -- 4.3.1 Lithium Transition Metal Compounds (LxMyXz) -- 4.3.2 Transition Metal Oxide (TMOs) and Dichalcogenides (TMDs) -- 4.4 Future Perspectives on All-Solid-State Battery Cathodes -- 4.5 Conclusion -- References -- 5 Prospective Electrolytes for Solid-State Battery -- 5.1 Introduction -- 5.2 Different Categories of Solid-State Electrolytes -- 5.2.1 γ-Li3PO4 Oxysalts -- 5.2.2 NASICON Electrolytes -- 5.2.3 Garnet Solid Electrolytes -- 5.2.4 Perovskite Electrolytes -- 5.2.5 Sulfide Electrolyte -- 5.2.6 Other Important Electrolytes -- 5.3 Electrode-Electrolyte Interfaces in Solid-State Batteries -- 5.4 Conclusions and Future Perspectives -- References -- 6 Novel Design Aspects of All-Solid-State Batteries -- 6.1 Introduction -- 6.2 Challenges in Design Aspects -- 6.2.1 Stable Electrode-Electrolyte Interfaces -- 6.2.2 Materials Compatibility -- 6.2.3 Resistance at the Interface and Other Factors -- 6.3 Conventional Design -- 6.3.1 By Powder Pressing -- 6.3.2 Coin Cell and Prototype Assemblies of All Solid-State Batteries -- 6.4 Limitations of Conventional Design Strategies for ASSBs -- 6.5 Novel Design Aspects in ASSBs.
,
6.5.1 Printing Technology -- 6.5.2 Stretchable Design -- 6.5.3 3D-Integrated Design -- 6.5.4 Micro-Battery Design -- 6.5.5 Thin-Film Design -- 6.5.6 Hybrid Design -- 6.5.7 Atomic Layer Deposition: Solid-State Full Cell Battery Design -- 6.6 Other Different Design Strategies -- 6.7 Conclusion -- References -- 7 Interfaces in Solid-State Batteries: Challenges and Design Strategies -- 7.1 Introduction -- 7.2 Solid Electrolyte-Safe Battery Technology -- 7.3 Interface in All-Solid-State Batteries -- 7.4 Two Interfaces: Cathode-Electrolyte and Anode-Electrolyte Interfaces -- 7.4.1 Cathode-Electrolyte Interfaces -- 7.4.2 Anode-Electrolyte Interface -- 7.5 Major Issues with Solid-Solid Interfaces -- 7.6 Ionic and Electronic Movements -- 7.7 Interface Interaction with Various Solid Electrolytes -- 7.7.1 The Interface with Sulfide Electrolytes -- 7.7.2 The Interface with Oxide Electrolytes -- 7.7.3 The Interface with Polymer Electrolytes -- 7.7.4 Solid-State Electrolyte/Li Interphase -- 7.8 Strategies to Enhance the Contact of Interfaces -- 7.8.1 Cathode-Side Interfaces -- 7.8.2 Anode-Side Interfaces -- 7.9 Novel Design Aspects of Interfaces -- 7.9.1 Cathode Surface Coating -- 7.9.2 Electrode-Solid Electrolyte Annealing -- 7.9.3 Composite and Wetting Agent on the Interface -- 7.9.4 Cold Pressing and Buffer Layer -- 7.9.5 Conclusions and Future Perspectives -- References -- 8 Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries -- 8.1 Introduction -- 8.2 State of the Art Interface Characterization Techniques -- 8.2.1 Electron Microscopic Techniques -- 8.2.2 X-ray Based Techniques for the Interface Analysis -- 8.2.3 Optical Spectroscopic Techniques for the Interface Analysis -- 8.2.4 Magnetic Techniques for the Interface Analysis.
,
8.2.5 Electrochemical Impedance Spectroscopy (EIS) as an Interface Analysis Tool -- 8.3 Other Promising Analysis Techniques to Unveil the Features of the All-Solid-State Interface -- 8.3.1 Neutron Depth Profiling -- 8.3.2 Secondary Ion Mass Spectrometry -- 8.3.3 Scanning Probe Microscopy Technique -- 8.4 Conclusion and Future Research Perspectives -- References -- 9 Recycling of All-Solid-State Lithium-Ion Batteries -- 9.1 Introduction -- 9.2 Failure Mechanism of LIBs and ASSLIBs -- 9.2.1 Failure of SSE/Cathode Interface -- 9.2.2 Failure of SSE/Anode Interface -- 9.3 General Aspects of Battery Recycling -- 9.4 Recycling of All-Solid-State Batteries -- 9.5 Construction of ASSLIBs-An Overview -- 9.5.1 Cell Assembly -- 9.6 Methods of Recycling of All-Solid-State Batteries -- 9.6.1 Mechanical Separation -- 9.6.2 Pyrometallurgy -- 9.6.3 Hydrometallurgy -- 9.6.4 Direct Recycling -- 9.6.5 Hydrothermal Regeneration -- 9.6.6 Dissolution/Precipitation -- 9.7 State-of-the-Art Research in ASSLIB Recycling -- 9.8 Outlook for ASSLIB Recycling -- 9.9 Reuse and Re-purposing of Recycled Materials -- 9.10 Summary and Conclusion -- References -- 10 Future Challenges to Address the Market Demands of All-Solid-State Batteries -- 10.1 Introduction -- 10.1.1 Market Demands to Be Fulfilled with ASSBs -- 10.2 Future Challenges with ASSBs -- 10.2.1 Challenges with the Existing Electrolytes -- 10.2.2 Challenges in Attaining High Energy Density -- 10.2.3 Challenges with the Effective Tools for Characterization -- 10.2.4 Challenges in the Design Aspects -- 10.2.5 Challenges with the Stability of the Batteries -- 10.2.6 Difficulties with Mass Production, Manufacturing Cost in High Energy/Power ASSBs -- 10.3 Concluding Remarks -- References.
Additional Edition:
Print version: Palaniyandy, Nithyadharseni Solid State Batteries Cham : Springer International Publishing AG,c2022 ISBN 9783031124693
Language:
English