UID:
edoccha_9960982377302883
Format:
1 online resource (292 pages)
ISBN:
9780128221747
Content:
Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings discusses these machine elements that are used to accommodate motion on or about shafts in mechanical systems, with ball bearings, cylindrical roller bearings, spherical roller bearings, and tapered roller bearings reviewed. Each bearing type experiences different kinds of motion and forces with their respective raceway, retainers and guiding flanges. The material in this book identifies the tribology of the major bearing types and how that tribology depends upon materials, surfaces and lubrication. In addition, the book describes the best practices to mitigate common failure modes of rolling element bearings.
Note:
Intro -- Rolling Bearing Tribology: Tribology and Failure Modes of Rolling Element Bearings -- Copyright -- Contents -- Preface -- Chapter One: Evolution of the rolling element bearing -- 1.1. Introduction -- 1.2. Evolution of rolling element bearings -- 1.3. Closure -- References -- Chapter Two: Rolling bearing types and applications -- 2.1. Introduction -- 2.2. Radial bearings -- 2.2.1. Radial ball bearings -- 2.2.1.1. Deep-groove ball bearings -- 2.2.1.2. Angular-contact ball bearings -- 2.2.1.3. Self-aligning double row ball bearing -- 2.2.1.4. Magneto ball bearings -- 2.2.2. Thrust ball bearings -- 2.3. Roller bearings -- 2.3.1. Radial roller bearings -- 2.3.1.1. Cylindrical roller bearings -- 2.3.1.2. Needle roller bearings -- 2.3.1.3. Tapered roller bearings -- 2.3.1.4. Spherical roller bearings -- 2.3.2. Thrust roller bearings -- 2.4. Rolling element designation systems -- 2.5. Closure -- References -- Chapter Three: Rolling bearing mechanics -- 3.1. Introduction -- 3.2. Rolling bearing geometries -- 3.2.1. Radial ball bearings -- 3.2.2. Raceway geometry -- 3.2.3. Spherical roller bearings -- 3.2.4. Radial cylindrical roller bearings -- 3.2.5. Tapered roller bearings -- 3.3. Kinematics -- 3.4. Materials -- 3.4.1. Steels -- 3.4.1.1. Eutectoid transformations -- 3.4.1.2. Steel melting -- 3.4.2. Ceramics -- 3.4.3. Cages -- 3.4.4. Surface treatments -- 3.4.4.1. Chemical conversion -- 3.4.4.2. Electro- and electroless plating -- 3.4.4.3. Chemical vapor deposition -- 3.4.4.4. Physical vapor deposition -- 3.4.4.5. Thermal spray deposition -- 3.5. Contact stresses and deformations -- 3.5.1. Surface stresses in elliptical contacts -- 3.5.2. Surface stresses in line contacts -- 3.5.3. Subsurface stresses -- 3.6. Static load distributions -- 3.6.1. Ball-raceway loading -- 3.6.2. Symmetrical spherical roller raceway loading.
,
3.6.3. Tapered and asymmetrical spherical roller-raceway and roller-flange loading -- 3.6.4. Cylindrical roller-raceway loading -- 3.6.5. Radial loading -- 3.6.6. Axial loading -- 3.6.7. Combined loading -- 3.7. Closure -- References -- Chapter Four: Lubricants and lubrication -- 4.1. Introduction -- 4.2. Properties of lubricants -- 4.2.1. Viscosity -- 4.2.2. Viscosity-temperature relationships -- 4.2.3. Viscosity index -- 4.2.4. Viscosity-pressure relationships -- 4.2.5. Viscosity-shear rate relationships -- 4.2.6. Viscosity classifications -- 4.2.7. Temperature characteristics -- 4.2.8. Impurities and contaminants -- 4.3. Lubricant types and compositions -- 4.3.1. Mineral oils -- 4.3.2. Synthetic oils -- 4.3.3. Greases -- 4.3.4. Additives -- 4.4. Lubricant films in rolling bearings -- 4.4.1. Elastohydrodynamic lubrication -- 4.4.2. Lubricant film thickness -- 4.4.3. Surfaces -- 4.4.4. Lubrication regimes -- 4.4.5. Grease lubrication -- 4.4.6. Solid lubrication -- 4.5. Closure -- References -- Chapter Five: Rolling bearing friction -- 5.1. Introduction -- 5.2. Sources of friction -- 5.2.1. Raceway friction -- 5.2.2. Frictional losses from viscous drag -- 5.2.3. Frictional losses from cage interfaces -- 5.3. Rolling bearing friction-Empirical equations -- 5.3.1. Ball bearings -- 5.3.2. Cylindrical roller bearings -- 5.3.3. Spherical roller bearings -- 5.3.4. Needle roller bearings -- 5.3.5. Tapered roller bearings -- 5.3.6. Other sources of friction -- 5.4. Estimation of frictional moments -- 5.4.1. Estimating the ideal frictional moment -- 5.4.2. Computational models for calculating the frictional moment -- 5.5. Frictional heat generation -- 5.5.1. Ball bearings -- 5.5.2. Roller bearings -- 5.5.3. Heat dissipation -- 5.6. Closure -- References -- Chapter Six: Rolling contact fatigue -- 6.1. Introduction -- 6.2. Microstructure of bearing steels.
,
6.3. Subsurface-initiated fatigue -- 6.3.1. Microstructural alterations -- 6.3.2. Inclusions -- 6.4. Surface-initiated fatigue -- 6.4.1. Low Λ conditions -- 6.4.2. Debris-damaged raceways -- 6.5. Bearing fatigue life -- 6.5.1. Introduction -- 6.5.2. Bearing life prediction -- 6.5.3. Weibull analysis -- 6.5.4. Lundberg-Palmgren model -- 6.5.5. Ioannides-Harris model -- 6.6. Load rating and fatigue life standards -- 6.6.1. ANSI/ABMA -- 6.6.1.1. Load rating and fatigue life -- 6.6.1.2. Static load rating, C0 -- 6.6.2. ISO 281:2007 -- 6.6.2.1. The contamination factor, eC -- 6.6.2.2. The viscosity ratio κ -- 6.6.2.3. The fatigue load limit, CU -- 6.6.2.4. Calculation of the life modification factor, aiso -- 6.7. ISO 281 examples -- 6.7.1. 6209 Deep groove ball bearing -- 6.7.2. 7218 Angular contact ball bearing -- 6.7.3. NU 212 cylindrical roller bearing -- 6.7.4. 22317 Spherical roller bearing -- 6.7.5. 30228 Tapered roller bearing -- 6.7.6. 51122 Thrust ball bearing -- 6.8. Limitations of standards -- 6.9. Closure -- References -- Chapter Seven: Causes and effects of bearing damage -- 7.1. Introduction -- 7.2. Bearing damage modes -- 7.2.1. Fatigue -- 7.2.2. Wear -- 7.2.2.1. Abrasive wear -- 7.2.2.2. Adhesive wear -- 7.2.3. Corrosion -- 7.2.3.1. Corrosion from moisture -- 7.2.3.2. Frictional corrosion -- 7.2.4. Electrical erosion -- 7.2.5. Plastic deformation -- 7.2.6. Fracture and cracking -- 7.3. White etching matter and bearing failures -- 7.4. Closure -- References -- Chapter Eight: Mitigation of rolling bearing damage modes -- 8.1. Introduction -- 8.2. Rolling contact fatigue -- 8.2.1. Subsurface-initiated fatigue -- 8.2.2. Surface-initiated fatigue -- 8.3. Wear -- 8.3.1. Abrasive wear -- 8.3.2. Adhesive wear -- 8.4. Corrosion -- 8.5. Electrical erosion -- 8.6. Closure -- References -- Chapter Nine: Selected case studies of bearing damage modes.
,
9.1. Introduction -- 9.2. False brinelling of satellite bearings -- 9.3. Electric arc damage of bearings in AC and DC motors -- 9.4. Abrasive wear resistance of aircraft turbine engine bearings -- 9.5. Rib/roller end smearing of tapered roller bearings in an automotive gearbox -- 9.6. Solid lubricant coatings for rotating anode X-ray tube applications -- 9.7. Ultralow viscosity lubricants in drivetrains -- 9.8. Abrasive wear resistance and debris damage of gearbox bearings -- 9.9. Wind turbine roller bearing failures -- 9.9.1. Micropitting of main shaft spherical roller bearings -- 9.9.2. Smearing of cylindrical roller bearings on high-speed shafts -- 9.9.3. Surface-initiated fatigue associated with white etch cracking -- 9.10. Closure -- References -- Index.
Additional Edition:
Print version: Doll, Gary Rolling Bearing Tribology San Diego : Elsevier,c2022 ISBN 9780128221419
Language:
English