Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    almafu_9961350503602883
    Format: 1 online resource (466 pages)
    Edition: 1st ed.
    ISBN: 3-031-46092-8
    Series Statement: Intelligent Systems Reference Library ; v.247
    Note: Intro -- Preface -- About This Book -- Key Features -- Contents -- About the Editors -- 1 Data Analytics for Smart Grids and Applications-Present and Future Directions -- 1.1 Introduction -- 1.2 Literature Review -- 1.3 Smart Grid Infrastructure -- 1.4 Data Analytics in Smart Grids -- 1.4.1 Data Pre Processing Techniques in Smart Grids -- 1.4.2 Case Study of Data Analytics in Smart Grids -- 1.5 Artificial Intelligence in Smart Grids -- 1.5.1 Event Detection Using Data Analytics and Cloud Computing for Intelligent IoT System -- 1.6 Conclusion -- References -- 2 Design, Optimization and Performance Analysis of Microgrids Using Multi-agent Q-Learning -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Proposed Model -- 2.4 Experiments -- 2.5 Conclusion -- References -- 3 Big Data Analytics for Smart Grid: A Review on State-of-Art Techniques and Future Directions -- 3.1 Introduction -- 3.2 State-of-Art Techniques for Big Data Analytics in Smart Grids -- 3.3 Challenges in Big Data Analytics for Smart Grids -- 3.4 Big Data Analytics for Smart Grids -- 3.5 Applications of Big Data Analytics in Smart Grids -- 3.6 Challenges and Future Directions for Big Data Analytics in Smart Grids -- 3.7 Case Studies of Big Data Analytics in Smart Grids -- 3.7.1 Case Study 1: Duke Energy's Grid Modernization Program -- 3.7.2 Case Study 2: National Grid's Smart Grid Program -- 3.7.3 Case Study 3: ENEL's Smart Grid Program -- 3.8 Future Directions for Big Data Analytics in Smart Grids -- 3.9 Real-Time Big Data Analytics for Smart Grids -- 3.10 Conclusion -- References -- 4 Smart Grid Management for Smart City Infrastructure Using Wearable Sensors -- 4.1 Introduction -- 4.1.1 Smart Grid Versus Traditional Electricity Grids -- 4.1.2 Why Do We Need Smart Grids? -- 4.1.3 Smart Grid Features -- 4.1.4 Smart Grid Technologies -- 4.1.5 Smart Grid Approaches. , 4.1.6 Smart Meters and Home EMS -- 4.1.7 Smart Appliances -- 4.1.8 Home Power Generation -- 4.1.9 Machine Learning for Data Analytics in Smart Grids and Energy Management -- 4.1.10 Security for Industrial Control Systems in Smart Grids -- 4.1.11 Power Flow Modelling and Optimization in Smart Grids -- 4.1.12 Grid Stability and Security in Smart Grids -- 4.1.13 Integration of Renewable Energy Sources in Smart Grid Management -- 4.1.14 Demand Response Strategies for Efficient Smart Grid Management -- 4.1.15 Cybersecurity Measures for Smart Grid Management -- 4.1.16 Energy Storage Systems and Their Role in Smart Grid Management -- 4.1.17 Data Analytics and Artificial Intelligence in Smart Grid Management -- 4.1.18 Smart Grid Communication Protocols and Infrastructure -- 4.1.19 Advantages of Smart Grids -- 4.1.20 Disadvantages of Smart Grids -- 4.2 Conclusion -- References -- 5 Studies on Conventional and Advanced Machine Learning Algorithm Towards Framing of Robust Data Analytics for the Smart Grid Application -- 5.1 Introduction -- 5.2 Review of Different Smart Grid Based Approaches -- 5.3 Smart Grid Model -- 5.3.1 Smart Grids as Coordinators for Data Flow and Energy Flow -- 5.3.2 Big Data -- 5.4 Features of Big Data to Be Integrated into the Smart Grid -- 5.5 Contribution of the Smart Grid as Data Source -- 5.6 Smart Grid in Supply of Data Gathering -- 5.6.1 Data Transmission Methodology -- 5.6.2 Data Analysis Methodology -- 5.6.3 Data Extraction from Smart Grid -- 5.6.4 Grid for Production of Renewable Source of Energy -- 5.6.5 Big Data in Smart Grid -- 5.6.6 Machine Learning Approach to the Data Grid -- 5.6.7 Application of IOT to the Smart Grid Technology -- 5.7 IOT Based Solutions Towards Grid Problems -- 5.7.1 Stability of IOT Based Connection -- 5.7.2 Cost Effectiveness in Implementation -- 5.7.3 Security to the Information. , 5.8 Application of Data Grid in Mobile Sink Based Wireless Sensor Network -- 5.8.1 Assumptions of Network Characteristics -- 5.9 Virtual Grid Architecture -- 5.9.1 Different Structures of Virtual Grids -- 5.9.2 Virtual Grid Construction Cost -- 5.9.3 Reading of the Smart Meter Data and Its Analysis by the Smart Grid with Future Prediction -- 5.9.4 Prediction Analysis of Smart Meter Data -- 5.10 Future Research Direction -- 5.11 Conclusion -- References -- 6 Prediction and Classification for Smart Grid Applications -- 6.1 Introduction -- 6.2 Smart Grid -- 6.3 Predictive and Classification Models in Smart Grid Applications -- 6.4 Predictive Modeling -- 6.5 Classification Modeling -- 6.6 Smart Grid Management -- 6.7 Intelligent Data Collection Devices -- 6.8 Data Science Pertaining to Smart Grid Analytics -- 6.9 Machine Learning for Data Analytics -- 6.10 Data Security for Smart Grid Applications -- 6.11 Conclusion -- References -- 7 A Review on Smart Metering Using Artificial Intelligence and Machine Learning Techniques: Challenges and Solutions -- 7.1 Introduction -- 7.1.1 Trends of the Smart Metering Systems -- 7.1.2 Challenges of Smart Meters -- 7.1.3 Key Elements of Smart Meter -- 7.1.4 IoT in Smart Metering -- 7.1.5 Integration of IoT with AI and Machine Learning for Smart Meter -- 7.1.6 Artificial Intelligence Techniques -- 7.2 Conclusion -- References -- 8 Machine Learning Applications for the Smart Grid Infrastructure -- 8.1 Introduction -- 8.2 IoT in Distribution System -- 8.3 Techniques Using Machine Learning -- 8.4 Conclusion -- References -- 9 A Privacy Mitigating Framework for the Smart Grid Internet of Things Data -- 9.1 Introduction -- 9.1.1 Overview of the Smart Grid and Its Significance in Modern Energy Systems -- 9.1.2 Introduction to the IoT and Its Integration with the Smart Grid -- 9.1.3 Importance of Privacy in Smart Grid IoT Data. , 9.2 Privacy Challenges in Smart Grid IoT Data -- 9.3 Privacy Mitigation Techniques -- 9.4 Privacy Mitigation Framework for Smart Grid -- 9.4.1 Privacy Monitoring Engine Description -- 9.5 Results -- 9.6 Conclusion -- References -- 10 Protecting Future of Energy: Data Security and Privacy for Smart Grid Applications Using MATLAB -- 10.1 Introduction -- 10.1.1 Data Security and Privacy Threats -- 10.1.2 Data Security and Privacy Solutions -- 10.1.3 MATLAB Solution -- 10.1.4 Key Features and Capabilities -- 10.2 MATLAB Tools and Inbuilt Functions for Data Security in Applications of Smart Grid -- 10.3 MATLAB Functions for Data Security and Privacy in Smart Grid Applications Include -- 10.4 MATLAB Techniques for Data Security and Privacy in Smart Grid Applications -- 10.5 Matlab Algorithm for Privacy-Preserving Data Mining for Smart Grid Applications -- 10.6 Threats to Data Security and Privacy in Smart Grid Applications -- 10.6.1 Preventive Measures -- 10.7 Case Studies and Practical Implementations of Data Security and Privacy in Smart Grid Applications -- 10.7.1 Case Study 1: Securing Smart Meters Using Blockchain -- 10.7.2 Case Study 2: Machine Learning-Based Anomaly Detection in Power Grids -- 10.7.3 Case Study 3: Privacy-Preserving Data Aggregation in Smart Grids -- 10.7.4 Case Study 4: Secure Data Sharing in Smart Grids Using Homomorphic Encryption -- 10.7.5 Case Study 5: Anomaly Detection in Smart Grids Using Machine Learning (ML) with Matlab -- 10.8 Conclusion -- References -- 11 Revolutionizing Smart Grids with Big Data Analytics: A Case Study on Integrating Renewable Energy and Predicting Faults -- 11.1 Introduction -- 11.2 Current Trends in Smart Grid Based Big Data Analytics -- 11.2.1 There is a Notable Surge in Speculation in Smart Grid Projects and, Consequently, Smart Grid Analytics [9-11]. , 11.2.2 Smart Grid Analytics Effectively Handle Real-Time Data Despite the Increased Speed and Diverse Requirements -- 11.2.3 Digital Technologies and Cloud Computing Will Continue to Improve, Facilitating Enhanced Data Computation Capabilities -- 11.2.4 Smart Grid and Its Benefits for Renewable Energy -- 11.3 Challenges of Smart Grid Analytics -- 11.3.1 Benefits of Analytics in Smart Grid -- 11.3.2 Trends in the Utility Industry -- 11.4 Technologies for Smart Grid Analytics and Its Importance -- 11.4.1 Business Intelligence (BI) and Data Analysis -- 11.4.2 Other Framework Technologies-Databases Such as Apache Hadoop, MapReduce, and SQL -- 11.4.3 The Significance of Big Data in Smart Grid Analytics -- 11.5 Gaining Perceptions Through a Smart Grid and Big Data: A Case Study -- 11.5.1 Case Studies in Focus -- 11.5.2 Smart Grid Based Data Analytics Use-Cases in Europe -- 11.6 Future and Scope of Big Data Analytics in Smart Grids -- 11.6.1 Customer Acceptance and Engagement -- 11.6.2 Regulatory Policies -- 11.6.3 Innovative Structures -- 11.7 Conclusion -- References -- 12 Fake User Account Detection in Online Social Media Networks Using Machine Learning and Neural Network Techniques -- 12.1 Introduction -- 12.1.1 Statistics of Social Media Usage -- 12.1.2 Why Are Fake Profiles Created? -- 12.2 Literature Review -- 12.3 Proposed System for Detecting Fake Accounts on Twitter Using AI -- 12.3.1 Artificial Neural Network (ANN) -- 12.3.2 Support Vector Machine (SVM) -- 12.3.3 Random Forest (RF) -- 12.4 Findings and Discussions -- 12.5 Conclusion -- References -- 13 Data Analytics for Smart Grids Applications to Improve Performance, Optimize Energy Consumption, and Gain Insights -- 13.1 Introduction -- 13.2 Leveraging Smart Grids for Predictive Energy Analytics -- 13.3 Big Data Analytics for Grid Resiliency and Security. , 13.4 Machine Learning Techniques for Smart Grid Optimization.
    Additional Edition: Print version: Kumar Sharma, Devendra Data Analytics for Smart Grids Applications--A Key to Smart City Development Cham : Springer International Publishing AG,c2024 ISBN 9783031460913
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages