Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edoccha_9961572115502883
    Format: 1 online resource (306 pages)
    Edition: 1st ed.
    ISBN: 9780443299704
    Series Statement: Emerging Technologies and Materials in Thermal Engineering Series
    Note: Front Cover -- Climate Change and Circular Economics -- Climate Change and Circular Economics: Emerging Technologies and Materials in Thermal EngineeringHuman Society as a Closed Th ... -- Copyright -- Dedication -- Contents -- About the author -- Foreword -- Preface -- Acknowledgments and credits -- One - Human society and nature interaction -- 1.1 Society as a dissipative open system -- 1.2 Closing processes in self-organizing cycles -- 1.3 Evolution of human society toward a closed system -- 1.4 Model evolution 3 -- 1.5 Specific results -- 1.5.1 Use of capital -- 1.6 Is an inclusive society possible? -- References -- Further reading -- Two - Irreversible thermodynamics view of the need for a circular economy -- 2.1 Introduction -- 2.2 Irreversible thermodynamics approach -- 2.3 Circular economy -- 2.4 Estimating temperature increases and crises -- 2.5 Turning waste into assets-resource management policy and new technologies -- Appendix 2.1 -- References -- Three - Resource materials and recycling technologies -- 3.1 The main elements of the raw materials initiative -- 3.2 Improving recycling rates -- 3.3 Japan and rare earths in permanent magnets -- 3.4 Managing resources -- 3.4.1 Charting America's import reliance on key minerals -- 3.4.2 US import reliance by mineral -- 3.5 China's gallium and germanium restrictions -- 3.6 Rebirth of nuclear and the needed resources -- 3.7 Technological resources -- 3.7.1 Waste heat recovery system characteristics -- 3.7.1.1 Issues with implementing action -- 3.7.1.2 Climate change impact -- 3.7.1.3 Conditions for emissions mitigation -- 3.7.1.4 Resources -- 3.7.2 End-use energy efficiency and demand side management actions -- 3.7.3 Promoting residential demand-side management programs -- 3.7.3.1 Characteristics -- 3.7.3.2 Issues with implementing action -- 3.7.3.3 Climate change impact. , 3.7.3.4 Conditions for emissions mitigation -- 3.7.3.5 Examples -- 3.7.3.6 Resources -- 3.7.4 Promoting commercial demand-side management programs -- 3.7.4.1 Characteristics -- 3.7.4.2 Issues with implementing action -- 3.7.4.3 Climate change impact -- 3.7.4.4 Conditions for emissions mitigation -- 3.7.4.5 Resources -- 3.7.5 Promoting industrial demand-side management programs -- 3.7.5.1 Characteristics -- 3.7.5.2 Issues with implementing action -- 3.7.5.3 Climate change impact -- 3.7.5.4 Conditions for emissions mitigation -- 3.7.5.5 Resources -- 3.7.6 Renewable energy actions -- 3.7.7 Biomass -- 3.7.7.1 Characteristics -- 3.7.7.2 Issues with implementing action -- 3.7.7.3 Climate change impact -- 3.7.7.4 Conditions for emissions mitigation -- 3.7.8 Geothermal -- 3.7.8.1 Characteeristics -- 3.7.8.2 Issues with implementing action -- 3.7.8.3 Climate change impact -- 3.7.9 Small-scale hydropower -- 3.7.9.1 Characteristics -- 3.7.9.2 Issues with implementing action -- 3.7.9.3 Climate change impact -- 3.7.9.3.1 Emission effect -- Conditions for emissions mitigation -- 3.7.10 Photovoltaics -- 3.7.10.1 Characteristics -- 3.7.10.2 Issues with implementing action -- 3.7.10.3 Climate change impact -- 3.7.10.3.1 Conditions for emissions mitigation -- 3.7.11 Solar thermal -- 3.7.11.1 Characteristics -- 3.7.11.2 Issues with implementing action -- 3.7.11.3 Climate change impact -- 3.7.11.4 Conditions for emissions mitigation -- 3.7.12 Waste-derived fuels -- 3.7.12.1 Characteristics -- 3.7.12.2 Issues with implementing action -- 3.7.13 Wind power -- 3.7.13.1 Characteristics -- 3.7.13.2 Issues with implementing action -- 3.7.13.3 Climate change impact -- 3.7.13.4 Conditions for emissions mitigation -- 3.7.14 Recycling of coal-combustion by-products -- 3.7.14.1 Characteristics -- 3.7.14.2 Climate change impact -- 3.7.14.3 Conditions for emissions mitigation. , 3.7.14.4 Issues with implementing action -- 3.7.15 Utilizing clean coal technology-fluidized bed combustion -- 3.7.15.1 Characteristics -- 3.7.15.2 Climate change impact -- 3.7.15.3 Conditions for emissions mitigation -- 3.7.15.4 Issues with implementing action -- 3.7.16 Utilizing clean coal technology-integrated coal gasification combined cycle systems -- 3.7.16.1 Characteristics -- 3.7.16.2 Climate change impact -- 3.7.16.3 Conditions for emissions mitigation -- 3.7.16.4 Issues with implementing action -- 3.8 Nuclear reactors -- 3.9 Energy storage technologies -- 3.10 Direct conversion of energy -- 3.10.1 Introduction -- 3.10.2 Direct versus dynamic energy conversion -- 3.10.2.1 Dominance of dynamic conversion -- 3.10.2.2 Why is direct conversion desirable? -- 3.10.2.3 Laws governing energy conversion -- 3.10.2.4 Thermoelectricity -- 3.10.2.4.1 Electrons and holes -- 3.10.2.4.2 Practical thermoelectric power generators -- 3.10.2.5 Thermionic conversion -- 3.10.2.5.1 "Boiling" electrons out of metals -- 3.10.2.5.2 Reducing the space charge -- 3.10.2.5.3 Thermionic power in outer space -- 3.10.2.6 Magnetohydrodynamic conversion -- 3.10.2.6.1 Big word, simple concept -- 3.10.2.6.2 The fourth state of matter -- 3.10.2.6.3 Magnetohydrodynamic power prospects -- 3.10.2.7 Chemical batteries -- 3.10.2.7.1 Electricity from the chemical bond -- 3.10.2.7.2 Chemical reactions used in batteries and fuel cells -- 3.10.2.7.3 An old standby in outer space -- 3.10.2.8 The fuel cell -- 3.10.2.8.1 A continuously fueled battery -- Potential fuels -- Scheme for Project Apollo -- 3.10.2.9 Solar cells -- 3.10.2.9.1 Photons as energy carriers -- 3.10.2.9.2 Harnessing the sun's energy -- 3.10.2.10 Nuclear batteries -- 3.10.2.10.1 Energy from nuclear particles -- 3.10.2.10.2 Double conversion -- 3.10.2.11 Advanced concepts -- 3.10.2.11.1 Ferroelectric conversion. , 3.10.2.11.2 Thermomagnetic conversion -- 3.10.2.11.3 On the frontier -- 3.11 Geostrategy of resources and critical infrastructures -- 3.12 Conclusions -- Annex 3.1. Food versus biofuels-an energy balance approach -- Decision support analysis for allocating agricultural area between food and biofuels based on energy conservation -- Introduction -- Advantages -- Disadvantages -- Biofuel (bioethanol) markets in selected nations -- United States -- European Union -- China -- Corn for food or for cars? -- Optimal partition of arable land between food and biofuel crops -- Conclusions -- Annex 3.1.1 -- References -- Further reading -- Four - Big data analysis for climate change proof and risk mitigation -- 4.1 Introduction -- 4.2 Data series -- 4.3 Risk mapping by risk category -- 4.4 Risk assessment frequency/probability measures -- 4.5 Assessing damage -- 4.6 Climate change risk maps -- 4.6.1 Flood risk map -- 4.6.2 Drought risk map -- 4.6.3 Snow risk map -- 4.6.4 Freeze risk -- 4.7 Mapping tool and combined climate change effect risks -- 4.8 Population at risk and economic impacts -- 4.8.1 The way forward, a synthesis for decision-makers -- 4.8.2 Authority of the General Inspectorate for Emergency Situtions -- 4.8.3 Investments -- 4.8.4 Communication -- 4.8.5 Insurance -- 4.9 Setting the basis for a climate change event risk insurance policy -- 4.10 Decisions based on risk -- 4.10.1 Further actions -- 4.11 Hazard risks and their impact on critical infrastructure -- 4.11.1 Case analysis-natural gas networks of Italy and Romania -- 4.11.1.1 Introduction -- 4.11.1.1.1 Quantification of risk -- 4.11.1.1.2 Data preparation -- 4.11.1.1.3 Literature review -- 4.11.1.1.4 Logical model and risk mapping -- 4.12 Conclusions -- Annex 4.1 -- Annex 4.2 -- References -- Further readings -- Five - Brief considerations of economic indicators. , 5.1 From simple to aggregated -- 5.2 Normalization of parameter values -- 5.3 Population migration-A potential cyclic behavior due to saturation -- 5.4 Avoiding or crossing limits-System resilience -- 5.5 Sustainability-Accepting limits -- 5.6 Economy versus environment-Negotiating development -- 5.6.1 Information -- 5.6.2 Time -- 5.6.3 Indicators of sustainability -- 5.6.4 Costs -- 5.7 Conclusions -- 5.7.1 Measuring circular economy-complex indicators -- Annex 5.1 -- The nonlinear GDP dynamics and basins of cyclic behavior -- Introduction -- Data and Fourier analysis -- Eigenvalues and flows -- Determination of differential equations -- Long- and short-term intersectoral cycles -- Finance and agriculture -- Finance and commerce -- Finance and construction -- Finance and services -- Industry and agriculture -- Industry and construction -- Industry and commerce -- Industry and services -- Agriculture and commerce -- Agriculture and construction -- Agriculture and services -- Commerce and construction -- Commerce and services -- Services and construction -- References -- Six - Green investment schemes for sustainability -- 6.1 Case study-green investment scheme of World Bank -- 6.2 Case study: Japan Bank for International Cooperation-proposed green investment scheme financing structure -- 6.3 General green investment scheme for Romania -- Seven - Entropy in economics (bioeconomics, thermoeconomics, econophysics, and others) -- 7.1 Storage, emergy, and transformity -- 7.1.1 Preface to the second edition -- 7.1.2 From content -- 7.1.3 From the back cover -- 7.2 Information and entropy, by Alan McGowan -- 7.3 The entropy concept in biology, by Alan McGowen -- 7.4 Microsoft Encarta encyclopedia: second law of thermodynamics -- 7.4.1 Energy and the forces of production -- 7.4.2 Entropy -- 7.4.3 System defined -- 7.4.4 Thermodynamic estimates. , 7.5 Summary of energy and the US economy.
    Additional Edition: Print version: Purica, Ionut Climate Change and Circular Economics San Diego : Elsevier,c2024 ISBN 9780443299698
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages