Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    edoccha_9961612420602883
    Umfang: 1 online resource (429 pages)
    Ausgabe: 1st ed.
    ISBN: 0-443-13674-2
    Serie: Additive Manufacturing Materials and Technologies Series
    Anmerkung: Front Cover -- Smart Materials in Additive Manufacturing, Volume 3 -- Copyright Page -- Dedication -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- 1 Robotic materials 4D printing -- 1.1 4D printing of pneumatic soft robots sensors and actuators -- 1.2 4D printing of hydrogel soft actuator -- 1.3 4D printing of soft sensors in robotics -- 1.4 4D printing of micropositioning parallel robots -- 1.5 Autonomously controlled soft actuators by 4D printing -- 1.6 Silicone-based robots via 4D printing -- 1.7 Closed-loop 4D printing of autonomous soft robots -- 1.8 Spoon4PD: a smart tool additively manufactured for Parkinson's disease -- 1.9 Liquid crystal elastomers 4D printing -- 1.10 4D printing of molded-interconnect device -- 1.11 Automated design of 4D-printed soft robots -- 1.12 A design paradigm on 4D printing magnetorheological actuators for highly integrated robotics applications -- 1.13 4D printing of polyurethane actuators and sensors -- References -- 2 4D printing of pneumatic soft robots sensors and actuators -- 2.1 Introduction -- 2.2 4D printing approaches with soft materials -- 2.2.1 Photocuring technology -- 2.2.2 Fused deposition molding -- 2.2.3 InkJet printing -- 2.2.4 Direct ink writing -- 2.3 Structural design and actuator control -- 2.3.1 Fiber-constrained structure -- 2.3.2 Corrugated structure -- 2.3.3 Folding structure -- 2.3.4 Untethered structure -- 2.4 Multifunctional design -- 2.4.1 Self-sensing design -- 2.4.2 Seal-healing design -- 2.4.2.1 Interchain diffusion -- 2.4.2.2 Phase separation morphology -- 2.4.2.3 Shape memory recovery -- 2.4.2.4 Dynamic covalent remodeling -- 2.4.2.5 Micro or nanoparticle reinforcement -- 2.4.3 Self-discoloration design -- 2.4.4 Stiffness changing design -- 2.5 Challenges and future opportunities -- 2.5.1 Reliability -- 2.5.2 Pneumatic supply. , 2.5.3 Motion control -- 2.6 Conclusions -- Acknowledgments -- References -- 3 4D printing of hydrogel soft actuators -- 3.1 Introduction -- 3.2 4D printing technologies -- 3.2.1 Light-based 4D printing -- 3.2.1.1 Stereolithography -- 3.2.1.2 Digital light processing -- 3.2.2 Direct ink writing -- 3.3 Stimuli-responsive hydrogels -- 3.3.1 Thermal-responsive hydrogels -- 3.3.2 Light-responsive hydrogels -- 3.3.3 Electro-responsive hydrogels -- 3.3.4 Magneto-responsive hydrogels -- 3.3.5 pH-responsive hydrogels -- 3.3.6 Ion-responsive hydrogels -- 3.4 Preparation of hydrogel actuators with anisotropic structures -- 3.4.1 Bilayer structures -- 3.4.2 Gradient structures -- 3.4.3 Patterned structures -- 3.4.4 Oriented structures -- 3.5 Application of 4D printed hydrogel soft actuators -- 3.5.1 Manipulators and grippers -- 3.5.2 Locomotion behaviors -- 3.5.3 Biomimetic devices -- 3.5.4 Valves -- 3.5.5 Folding and origami -- 3.6 Perspectives -- 3.7 Conclusion -- References -- 4 4D printing of soft sensors in robotics -- 4.1 Introduction -- 4.2 4D printing and robotics -- 4.3 Diverse printing techniques toward soft sensors -- 4.4 Materials and design considerations for soft sensors -- 4.5 Types of soft sensors -- 4.6 Piezoresistive-type sensors -- 4.7 Capacitive-type soft sensors -- 4.8 Piezoelectric type soft sensors -- 4.9 Triboelectric type sensors -- 4.10 Magnetoelectric type sensor -- 4.11 Environmental and chemical sensors -- 4.12 Challenges and future prospects of 4D printing of soft sensors in robotics -- 4.13 Conclusion -- References -- 5 4D printing of micropositioning parallel robots -- 5.1 Introduction -- 5.2 Design and working principle -- 5.3 Shape programming -- 5.4 Finite element analysis -- 5.5 Results and discussion -- 5.5.1 x-axis and y-axis actuations -- 5.5.2 xy-plane actuations -- 5.5.3 Rotation -- 5.5.4 z-axis actuations. , 5.5.5 Performance comparison -- 5.6 Conclusion -- Acknowledgments -- References -- 6 4D printing of autonomously controlled soft actuators for tremor vibration suppression -- 6.1 Introduction -- 6.2 Methodology -- 6.3 Fabricating and characterizing of the variable stiffness structure -- 6.3.1 Project A -- 6.3.2 Characterization -- 6.3.3 Project B -- 6.3.4 Characterizations -- 6.3.4.1 Mathematical model of the flexible joint -- 6.3.4.2 Reinforcement learning algorithm for autonomous control -- 6.4 Simulation -- 6.5 Experimental results and discussions -- 6.5.1 Project A -- 6.5.2 Project B -- 6.6 Conclusion -- References -- 7 Silicone elastomer soft robots via 4D printing -- 7.1 Introduction -- 7.1.1 Material and fabrication methods -- 7.1.2 Additive manufacturing as a solution to fabricate soft robotics parts -- 7.1.3 4D printing -- 7.2 Soft planar parallel manipulator -- 7.2.1 Materials preparation and manufacturing -- 7.2.2 Kinematic design of the three-prismatic-revolute-revolute robot -- 7.2.3 Choosing the optimal arrangement for the thermal stimulus through experimental analysis -- 7.2.4 Asymmetry designation and finite element analysis experiments -- 7.2.5 Results and discussion -- 7.3 Bi-stable soft robotic gripper -- 7.3.1 Methodology -- 7.3.2 Optimization using response surface methodology -- 7.3.3 Finite element simulation -- 7.3.4 Response surface method Modeling and optimization -- 7.4 Results and discussion -- 7.4.1 Finite element simulation results -- 7.4.2 Response surface method results -- 7.5 Conclusion -- References -- 8 Closed-loop 4D printing of autonomous soft robots -- 8.1 Introduction -- 8.2 Modeling methods -- 8.2.1 Modeling by first principles -- 8.2.2 Data-driven modeling -- 8.2.3 Model representations -- 8.2.3.1 Linear models -- 8.2.3.2 Polynomials -- 8.2.3.3 Neural networks -- 8.2.3.4 Gaussian processes. , 8.2.3.5 Decision trees -- 8.2.4 Model fitting methods -- 8.2.4.1 Optimization algorithms -- 8.2.4.2 Statistical regression techniques -- 8.2.4.3 Machine learning approaches -- 8.2.4.4 Bayesian inference -- 8.3 Closed-loop control methods -- 8.3.1 Feedback regulators -- 8.3.2 Optimal control -- 8.3.2.1 Dynamic programming -- 8.3.2.2 Model predictive control -- 8.3.3 Adaptive control -- 8.3.3.1 Model reference adaptive control -- 8.3.3.2 Adaptive sliding mode control -- 8.3.4 Intelligent control -- 8.3.4.1 Reinforcement learning -- 8.3.4.2 Fuzzy logic control -- 8.3.5 Model-based and model-free controllers -- 8.4 Closed-loop control of 4D-printed shape memory polymer -- 8.4.1 Data-driven modeling -- 8.4.2 Modeling of electric heating unit -- 8.4.3 Modeling of shape memory polymer -- 8.4.4 Cascade control structure -- 8.4.4.1 Proportional integral derivative control -- 8.4.4.2 Dynamic programming -- 8.4.4.3 Reinforcement learning -- 8.4.4.4 Adaptive control -- 8.5 Conclusion -- Acknowledgment -- References -- 9 Spoon4PD: a smart tool 3D printed for Parkinson's disease -- 9.1 Introduction -- 9.2 Methodology -- 9.2.1 Mathematical modeling -- 9.2.2 Spoon4PD conceptual design -- 9.2.3 3D printing of the Spoon4PD handle -- 9.2.4 Hand tremor test -- 9.3 Results and discussions -- 9.4 Conclusions -- Acknowledgements -- References -- 10 Liquid crystal elastomers 4D printing -- 10.1 The brief introduction of liquid crystal elastomers -- 10.2 Conventional methods for liquid crystal elastomers fabrication -- 10.3 Liquid crystal elastomers 4D printing -- 10.3.1 Direct ink writing -- 10.3.2 Digital light processing -- 10.3.3 Two-photon lithography -- 10.4 Summary and outlook -- References -- 11 4D printing of molded interconnect device -- 11.1 Introduction -- 11.2 Thermal deformation of fused filament fabrication-printed thermoplastic parts. , 11.2.1 Programmed printing paths for fused filament fabrication-type additive manufacturing -- 11.2.2 In-plane shape transformation of homogeneously laminated strands -- 11.2.3 Out-of-plane shape transformation of heterogeneously laminated strands -- 11.2.4 In-plane shape transformation of partial annulus -- 11.2.5 Out-of-plane shape transformation of full annulus -- 11.3 Thermo-responsive 4D printing using programmed printing paths -- 11.3.1 2D-to-3D shape transformation of complicated shapes -- 11.3.2 Localized shape transformation -- 11.3.3 Constrained shape transformation -- 11.4 Thermo-responsive 4D printing of molded interconnect device keyboard -- 11.4.1 Design of a flat molded interconnect device keypad -- 11.4.2 Design of printing paths for programmed anisotropy -- 11.4.3 Additive manufacturing of flat molded interconnect device keyboard -- 11.4.4 4D printing of curved molded interconnect device keyboard using constrained shape transformation -- 11.5 Conclusion -- Acknowledgment -- References -- 12 Automated design of 4D-printed soft robots -- 12.1 Introduction -- 12.2 Automated design process -- 12.2.1 Representation -- 12.2.2 Optimization algorithm -- 12.2.3 Objective -- 12.2.4 Design evaluation -- 12.3 Design optimization of pneumatic soft robots -- 12.3.1 Topology-optimized soft grippers -- 12.4 Tendon-driven compliant soft robots -- 12.5 Variable stiffness soft robots -- 12.6 Future directions -- Acknowledgment -- References -- 13 4D printing magnetorheological actuators for highly integrated robotics applications -- 13.1 Introduction -- 13.1.1 Motivation -- 13.1.2 Approach -- 13.2 Technological base -- 13.2.1 Magnetorheological clutches -- 13.2.2 Metal 3D printing -- 13.2.3 4D printing nested magnetorheological clutches -- 13.3 Prototyping -- 13.3.1 Design and manufacturing -- 13.3.2 Experimental characterization -- 13.3.3 Benchmarking. , 13.4 Conclusions.
    Weitere Ausg.: ISBN 0-443-13673-4
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz