UID:
edocfu_9958354998302883
Format:
1 online resource (419p.)
Edition:
2. rev. ed.
ISBN:
9783110905120
Series Statement:
De Gruyter Studies in Mathematics, 1
Note:
Frontmatter --
,
Chapter 1: Foundations. --
,
1.0 Review of Differential Calculus and Topology --
,
1.1 Differentiable Manifolds --
,
1.2 Tensor Bundles --
,
1.3 Immersions and Submersions --
,
1.4 Vector Fields and Tensor Fields --
,
1.5 Covariant Derivation --
,
1.6 The Exponential Mapping --
,
1.7 Lie Groups --
,
1.8 Riemannian Manifolds --
,
1.9 Geodesics and Convex Neighborhoods --
,
1.10 Isometric Immersions --
,
1.11 Riemannian Curvature --
,
1.12 Jacobi Fields --
,
Chapter 2: Curvature and Topology. --
,
2.1 Completeness and Cut Locus --
,
2.1 Appendix – Orientation --
,
2.2 Symmetric Spaces --
,
2.3 The Hilbert Manifold of H1-curves --
,
2.4 The Loop Space and the Space of Closed Curves --
,
2.5 The Second Order Neighborhood of a Critical Point --
,
2.5 Appendix – The S1- and the Ζ2-action on AM --
,
2.6 Index and Curvature --
,
2.6 Appendix – The Injectivity Radius for 1/4-pinched Manifolds --
,
2.7 Comparison Theorems for Triangles --
,
2.8 The Sphere Theorem --
,
2.9 Non-compact Manifolds of Positive Curvature --
,
Chapter 3: Structure of the Geodesic Flow. --
,
3.1 Hamiltonian Systems --
,
3.2 Properties of the Geodesic Flow --
,
3.3 Stable and Unstable Motions --
,
3.4 Geodesics on Surfaces --
,
3.5 Geodesics on the Ellipsoid --
,
3.6 Closed Geodesies on Spheres --
,
3.7 The Theorem of the Three Closed Geodesics --
,
3.8 Manifolds of Non-Positive Curvature --
,
3.9 The Geodesic Flow on Manifolds of Negative Curvature --
,
3.10 The Main Theorem for Surfaces of Genus 0 --
,
References --
,
Index
,
In English.
Language:
English
DOI:
10.1515/9783110905120
URL:
https://doi.org/10.1515/9783110905120