UID:
edocfu_9961055518102883
Format:
444 pages :
,
illustrations (some color) ;
,
24 cm
ISBN:
9780128219348
Series Statement:
Enhanced Oil Recovery Series
Content:
Thermal Methods, Volume Two, the latest release in the Enhanced Oil Recovery series, helps engineers focus on the latest developments in this fast-growing area. In the book, different techniques are described in addition to the latest technologies in data mining and hybrid processes. Supported field case studies are included to illustrate a bridge between research and practical applications, making it useful for both academics and practicing engineers. Structured to start with thermal concepts and steam flooding, the book's editors then advance to more complex content, guiding engineers into areas such as hybrid thermal methods and edgier technologies that bridge solar and nuclear energy.
Note:
Intro -- Thermal Methods -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Overview of thermal concepts in enhanced oil recovery -- 1.1. Introduction -- 1.2. Types of heat transfer -- 1.2.1. Conduction -- 1.2.2. Convection -- 1.2.3. Radiation -- 1.3. Heat-carrying capacity of steam -- 1.4. Heat of combustion -- 1.5. Heat losses -- 1.6. Fluid flow in porous media -- 1.6.1. Continuum modeling -- 1.6.2. Pore scale modeling -- 1.6.3. Multiple continua modeling -- 1.7. Thermal methods -- 1.7.1. Cyclic steam injection or cyclic steam stimulation (CSS) -- 1.7.2. Steam flooding (SF) -- 1.7.3. Steam-assisted gravity drainage (SAGD) -- 1.7.4. In situ combustion -- 1.8. Thermodynamic mechanisms -- 1.9. Effect of heat on fluid-rock properties -- 1.10. Effect of reservoir mineralogy and heterogeneity -- 1.11. Steam characteristics -- 1.12. Steam quality -- 1.13. Steam distillation -- 1.14. Beneficial effect of steam distillation -- 1.15. Saturation pressure and temperature -- 1.16. Oil viscosity -- 1.17. Hybrid thermal recovery processes -- 1.18. Future directions of heavy oil recovery processes -- References -- Chapter 2: Steam flooding (steam drive) -- 2.1. Introduction -- 2.2. Steam flooding concepts -- 2.2.1. Steam flooding dependence -- 2.3. Screening criteria -- 2.4. Water quality for steam generation -- 2.5. Steam generation -- 2.5.1. Preview -- 2.5.2. Steam generators -- 2.6. Steaming injection in heavy oil reservoir and tar sands -- 2.6.1. Mobilization of heavy oil and bitumen -- 2.6.2. Recovery methods -- 2.7. Mechanisms -- 2.8. Reservoir thickness, heterogeneity, and properties -- 2.9. Well spacing and proper well pattern -- 2.10. Improvement of an oil/water mobility ratio and relative permeability -- 2.11. Existing laboratory-scale recovery factor -- 2.12. Case studies -- 2.13. Models and simulation.
,
2.14. Fracturing and reservoir expansion -- References -- Chapter 3: Cyclic steam stimulation -- 3.1. Introduction -- 3.2. CSS process -- 3.3. Recovery mechanisms of the CSS process -- 3.4. Steam-rock interactions -- 3.5. Relative permeability -- 3.6. Modeling and simulation -- 3.7. Upscaling -- 3.7.1. History of upscaling studies -- 3.7.2. Upscaling parameters -- 3.8. CSS with horizontal wells -- 3.9. Optimization -- 3.10. Screening criteria -- 3.11. Case studies -- 3.11.1. Case 1 -- 3.11.2. Case 2 -- 3.11.3. Case 3 -- 3.11.4. Case 4 -- References -- Further reading -- Chapter 4: Steam-assisted gravity drainage -- 4.1. Introduction -- 4.2. Operational parameters in the SAGD process -- 4.3. Preheating (startup phase) -- 4.4. Emulsification phenomenon -- 4.4.1. SAGD emulsion viscosity models -- 4.5. Multiphase fluid flow -- 4.6. Heat transmission mechanisms in the steam chamber boundary -- 4.7. Finger rise theory -- 4.8. Variations of the SAGD process -- 4.8.1. Single-well SAGD -- 4.8.2. Steam and gas push (SAGP) -- 4.8.3. SAGD wind-down -- 4.8.4. Expanding solvent SAGD (ES-SAGD) -- 4.8.5. Fast-SAGD -- 4.8.6. Solvent thermal resource innovation process (STRIP) -- 4.8.7. Multiple thermal fluids assisted gravity drainage (MFAGD) -- 4.8.8. Rich solvent-Steam-assisted gravity drainage (RS-SAGD) -- 4.9. Co-SAGD processes -- 4.9.1. Addition of chemicals -- 4.9.2. Noncondensable gas -- 4.9.3. Flue-gas assisted SAGD -- 4.9.4. Foam-assisted-SAGD (FA-SAGD) -- 4.10. Experimental studies -- 4.11. SAGD in reservoirs with a bottom aquifer -- 4.12. SAGD in fractured reservoirs -- 4.13. Effect of heterogeneity on SAGD -- 4.14. Hydraulic fracturing in SAGD -- 4.15. Impact of geomechanical effects during SAGD -- 4.16. Mathematical modeling and simulation -- 4.17. Artificial intelligence (AI)-based simulation -- 4.18. Optimization of SAGD -- 4.19. Screening criteria.
,
4.20. Field-scale studies and challenges -- 4.21. Environmental issues -- 4.22. Economical evaluation and feasibility of the SAGD -- References -- Chapter 5: In situ combustion -- 5.1. Overview -- 5.2. In situ combustion conceptual reactions -- 5.3. In situ combustion mechanisms -- 5.4. Screening criteria -- 5.5. Reservoir fluid characterization for combustion studies -- 5.6. Laboratory experiments: From reaction kinetics development to combustion process evaluation -- 5.7. Combustion modeling and challenges-Process view -- 5.7.1. Actual chemical reactions -- 5.7.2. Displacement of reservoir fluids -- 5.7.3. Heat spread -- 5.7.4. Combustion gases -- 5.7.5. Advancement of combustion front -- 5.8. Forward and reverse combustion -- 5.8.1. Forward combustion -- 5.8.2. Reverse combustion -- 5.8.3. Pilot tests -- 5.8.4. HPAI (high-pressure air injection) for light oil recovery -- 5.9. Process variations -- 5.9.1. Dry and wet combustion -- 5.9.2. Cyclic combustion -- 5.9.2.1. Field pilot -- 5.9.3. Pressure cyclic combustion (pressure upblow down process) -- 5.9.4. Steam oxygen co-injection -- 5.9.5. THAI (toe to heel air injection) -- 5.9.6. THAI CAPRI (catalytic version of THAI) -- 5.9.7. CAGD (combustion assisted gravity drainage) process -- 5.9.8. COSH (combustion override split production horizontal well process) -- 5.9.9. COFCAW (combination of forward combustion and waterflooding) -- 5.10. Reservoir modeling and simulation -- 5.11. Upscaling -- 5.12. Field challenges -- 5.13. Economic and environmental feasibility -- 5.13.1. Economic feasibility -- 5.13.2. Environmental feasibility -- References -- Chapter 6: Hybrid thermal-solvent process -- 6.1. Introduction -- 6.2. Optimal conditions in the solvent steam process -- 6.2.1. Ideal solvent properties -- 6.2.2. Ideal solvent composition -- 6.2.3. Ideal solvent concentration.
,
6.3. Advantages of a combination of solvent addition to steam -- 6.4. Classification of solvent recovery processes -- 6.4.1. Expanding solvent steam assisted gravity drainage (ES-SAGD) -- 6.4.2. Liquid addition to steam for enhanced recovery (LASER) -- 6.4.3. Steam alternating solvent (SAS) -- 6.4.4. Solvent-enhanced steam flooding (SESF) or solvent-aided process (SAP) -- 6.4.5. Alkaline steam flooding -- 6.5. Modeling and simulation -- 6.5.1. ES-SAGD process -- 6.5.2. SAS process -- 6.5.3. SESF or SAP process -- 6.6. Field implementation -- References -- Chapter 7: Hybrid thermal-NCG process -- 7.1. Introduction -- 7.2. Mechanisms -- 7.3. Oil viscosity reduction -- 7.4. Screening criteria -- 7.5. NCG-CSS process -- 7.5.1. N2-CSS process -- 7.5.2. CO2-CSS process -- 7.5.3. Flue gas-CSS process -- 7.5.4. Air-CSS process -- 7.6. The NCG-SAGD process -- 7.7. NCG-SAGD analytical model -- 7.8. Low-temperature oxidation reaction -- 7.9. Extra-heavy crude oil reserves techniques -- 7.10. Modeling and simulation -- 7.11. Upscaling -- 7.12. Field applications -- 7.13. Field challenges -- 7.14. Economic and environmental feasibility -- References -- Chapter 8: Hybrid thermal chemical EOR methods -- 8.1. Introduction -- 8.2. Chemical-assisted thermal methods -- 8.2.1. Surfactant-assisted thermal method -- 8.2.1.1. Basics of foam -- 8.2.1.2. Foaming agents -- 8.2.1.3. Foam stability, volume, and size -- 8.2.1.4. Foam transport in porous media -- 8.2.1.5. Foam EOR mechanisms -- 8.2.1.6. Foam-assisted SAGD -- Steam-assisted gravity drainage -- Reasons for foaming steam -- Challenges and limitations -- Modelling and simulation -- 8.2.2. Polymer-assisted thermal method -- 8.2.2.1. Introduction -- 8.2.2.2. Polymer-assisted SAGD -- 8.2.2.3. Polymer properties -- 8.2.2.4. EOR mechanisms -- 8.2.2.5. Alkali-surfactant-polymer (ASP) conjugated with thermal methods.
,
8.2.2.6. Modeling and simulation of rheological behavior -- 8.2.2.7. Limitations and critical parameters -- 8.2.2.8. Upscaling -- Screening criteria -- 8.2.2.9. Challenges and limitations -- 8.2.3. Nanoparticle-assisted thermal method -- 8.2.3.1. Introduction -- 8.2.3.2. Interaction of nanoparticles in thermal EOR -- 8.2.3.3. Nano-assisted air injection processes -- 8.2.3.4. Nano-assisted steam injection processes -- 8.2.4. Other methods -- 8.2.4.1. Noncondensible gas foams -- Polymer enhanced foam -- 8.2.4.2. High-temperature gels -- 8.2.4.3. Exothermic chemical reactions -- 8.3. Thermal stability of chemicals -- 8.3.1. Thermal stability of surfactants -- 8.3.2. Thermal stability of polymers -- 8.3.3. Thermal stability of nanomaterials -- 8.4. Field applications -- 8.4.1. FA-SAGD -- 8.4.2. Polymer-assisted SAGD -- 8.4.3. Nanoparticle-assisted SAGD -- 8.5. Economical and environmental concerns -- 8.5.1. Surfactants -- 8.5.2. Polymers -- 8.5.3. Nanoparticles -- References -- Chapter 9: Other thermal methods -- 9.1. Introduction -- 9.2. Deep eutectic solvents (DESs) -- 9.2.1. Screening criteria -- 9.2.2. Existing laboratory tests -- 9.2.3. Challenges and future directions -- 9.2.4. Upscaling -- 9.2.5. Economic and environmental feasibility -- 9.3. In situ upgrading -- 9.3.1. Addition of catalysts -- 9.3.2. Addition of nanocatalysts -- 9.3.3. Screening criteria -- 9.3.4. Existing laboratory tests -- 9.3.5. Challenges and future directions -- 9.3.6. Field applications and challenges -- 9.3.7. Case studies -- 9.3.8. Economic and environmental feasibility -- 9.4. Electrical heating methods -- 9.4.1. Electrical resistive heating -- 9.4.2. Electromagnetic inductive heating -- 9.4.3. Microwaves/radio frequency heating method -- 9.4.4. Existing laboratory tests -- 9.4.5. Challenges and future directions -- 9.4.6. Field applications and challenges.
,
9.4.7. Case studies.
Additional Edition:
Print version: Hemmati Sarapardeh, Abdolhossein Thermal Methods San Diego : Elsevier Science & Technology,c2023 ISBN 9780128219331
Language:
English