UID:
edocfu_9961089671302883
Format:
1 online resource (454 pages)
ISBN:
0-12-812971-9
Note:
Machine generated contents note: Big Data and Transport Analytics: An Introduction /
,
Urban transportation Introduction --
,
Book Structure --
,
Special Acknowledgments --
,
References --
,
Further Reading --
,
Methodological --
,
Machine Learning Fundamentals /
,
Introduction --
,
A Little Bit of History --
,
Deep Neural Networks and Optimization --
,
Bayesian Models --
,
Basics of Machine Learning Experiments --
,
Concluding Remarks --
,
References --
,
Further Reading --
,
Using Semantic Signatures for Social Sensing in Urban Environments /
,
Introduction --
,
Spatial Signatures --
,
Spatial Point Pattern --
,
Spatial Autocorrelations --
,
Spatial Interactions With Other Geographic features --
,
Place-Based Statistics --
,
Temporal Signatures --
,
Thematic Signatures --
,
Examples --
,
Comparing Place Types --
,
Coreference Resolution Across Gazetteers --
,
Ceoprivacy --
,
Temporally Enhanced Geolocation --
,
Regional Variation --
,
Extraction of Urban Functional Regions --
,
Summary --
,
References --
,
Geographic Space as a Living Structure for Predicting Human Activities Using Big Data /
,
Introduction --
,
Living Structure and the Topological Representation --
,
Data and Data Processing --
,
Prediction of Tweet Locations Through Living Structure --
,
Correlations at the Scale of Thiessen Polygons --
,
Correlations at the Scale of Natural Cities --
,
Degrees of Wholeness or Life or Beauty --
,
Implications on the Topological Representation and Living Structure --
,
Conclusion --
,
Acknowledgments --
,
References --
,
Data Preparation /
,
Introduction --
,
Tools and Techniques --
,
Scripting and Statistical Analysis Software --
,
Database Management Software --
,
Working With Web Data --
,
Probe Vehicle Traffic Data --
,
Formats and Protocols --
,
Data Characteristics --
,
Challenges --
,
Data Preparation and Quality Control --
,
Context Data --
,
The Role of Context Data --
,
Types of Context Data --
,
Formats and Data Collection --
,
Data Cleaning and Preparation --
,
References --
,
Data Science and Data Visualization /
,
Introduction --
,
Structured Visualization --
,
Multidimensional Data Visualization Techniques --
,
Parallel Coordinates --
,
Multidimensional Scaling (MDS) --
,
t-Distributed Stochastic Neighbor Embedding for High-Dimensional Data Sets (t-SNE) --
,
Case Studies --
,
Experimental Setup --
,
Car Characteristics Data Set --
,
Congestion on 195 --
,
Dimensionality Reduction on NYC Taxi Flows --
,
Dimensionality Reduction on the NYC Turnstile Data Set --
,
Conclusions --
,
References --
,
Further Reading --
,
Model-Based Machine Learning for Transportation /
,
Introduction --
,
Background Concepts --
,
Notation --
,
Case Study 1: Taxi Demand in New York City --
,
Initial Probabilistic Model: Linear Regression --
,
Key Components of MBML --
,
Inference --
,
Model Improvements --
,
Case Study 2: Travel Mode Choices --
,
Improvement: Hierarchical Modeling --
,
Case Study 3: Freeway Occupancy in San Francisco --
,
Autoregressive Model --
,
State-Space Model --
,
Linear Dynamical Systems --
,
Common Enhancements to LDS --
,
NonLinear Variations on LDS --
,
Case Study 4: Incident Duration Prediction --
,
Preprocessing --
,
Bag-of-Words Encoding --
,
Latent Dirichlet Allocation --
,
Summary --
,
Further Reading --
,
References --
,
Textual Data in Transportation Research: Techniques and Opportunities /
,
Introduction --
,
Big Textual Data, Text Sources, and Text Mining --
,
Meaning of Text in the Context of Computational Linguistics --
,
Text Mining --
,
Text Mining Process Model --
,
Textual Data Sources in Transportation --
,
Fundamental Concepts and Techniques in Literature --
,
Topic Modeling --
,
Word2Vec -- Text Embeddings With Deep Learning --
,
Application Examples of Big Textual Data in Transportation --
,
Developing Transportation and Logistics Performance Classifiers Using NLTK and Naive Bayes --
,
Understanding the Public Opinion Toward Driverless Cars With Topic Modeling --
,
Predicting Taxi Demand in Special Events With Text Embeddings and Deep Learning --
,
Conclusions --
,
References --
,
Further Reading --
,
Applications --
,
Statewide Comparison of Origin-Destination Matrices Between California Travel Model and Twitter /
,
Introduction --
,
California Statewide Travel Demand Model --
,
Twitter Data --
,
Trip Extraction Methods --
,
Models for Matrix Conversion --
,
Tobit Regression Model --
,
Latent Class Regression Model --
,
Summary and Conclusion --
,
References --
,
Transit Data Analytics for Planning, Monitoring, Control, and Information /
,
Introduction --
,
Measuring System Performance From the Passenger's Point of View --
,
The Individual Reliability Buffer Time (IRBT) --
,
Denied Boarding --
,
Decision Support With Predictive Analytics --
,
Framework --
,
Application: Provision of Crowding Predictive Information --
,
Optimal Design of Transit Demand Management Strategies --
,
Framework and Problem Formulation --
,
Application: Prepeak Discount Design --
,
Conclusion --
,
Acknowledgments --
,
References --
,
Further Reading --
,
Data-Driven Traffic Simulation Models: Mobility Patterns Using Machine Learning Techniques /
,
New Modeling Challenges and Data Opportunities --
,
New Modeling Requirements --
,
New Data Sources --
,
Future Challenges --
,
Background --
,
Data-Driven Traffic Performance Modeling: Overall Framework --
,
Modeling Approach --
,
Model Components --
,
Application to Mesoscopic Modeling --
,
Data and Experimental Design --
,
Case Study Setup --
,
Application and Results --
,
Application to Microscopic Traffic Modeling --
,
Data and Experimental Design --
,
Case Study Setup --
,
Application and Results --
,
Application to Weak Lane Discipline Modeling --
,
Data and Experimental Design --
,
Case Study Setup --
,
Application and Results --
,
Network-Wide Application --
,
Implementation Aspects --
,
Case Study Setup --
,
Results --
,
Conclusions --
,
Acknowledgments --
,
References --
,
Big Data and Road Safety: A Comprehensive Review /
,
Introduction --
,
The Role of Big Data in Traffic Safety Analysis --
,
Real-Time Crash Prediction --
,
Driving Behavior --
,
ADAS and Autonomous Vehicles (AVs) --
,
Conclusions --
,
References --
,
A Back-Engineering Approach to Explore Human Mobility Patterns Across Megacities Using Online Traffic Maps /
,
Introduction --
,
Data and Traffic Information Extraction Methods --
,
Cities Characteristics --
,
Data Gathering and Preprocessing --
,
Extracting Traffic Information by Image Processing --
,
Temporal and Spatiotemporal Mobility Patterns --
,
Temporal Patterns --
,
Spatiotemporal Patterns --
,
Dynamic Clustering and Propagation of Congestion --
,
Conclusions --
,
References --
,
Pavement Patch Defects Detection and Classification Using Smartphones, Vibration Signals and Video Images /
,
Introduction --
,
Brief Literature Review --
,
Vibration-Based Methods --
,
Vision-Based Methods --
,
Methodology --
,
Anomaly Detection Using ANNs and Timeseries Analysis of Vibration Signals --
,
Anomaly Detection Using Entropic-Filter Image Segmentation --
,
Patch Detection and Measurement Using Support Vector Machines (SVM) --
,
Conclusions --
,
References --
,
Collaborative Positioning for Urban Intelligent Transportation Systems (ITS) and Personal Mobility (PM): Challenges and Perspectives /
,
Introduction --
,
C-ITS in Support of the Smart Cities Concept --
,
Scientific and Policy Perspectives of Urban C-ITS --
,
Taxonomy of Urban C-ITS Applications --
,
User Requirements for Urban C-ITS --
,
Requirements Overview --
,
Positioning Requirements and Parameters Definition --
,
Positioning Technologies for Urban ITS --
,
Radio Frequency-Based (RF) Technologies --
,
MEMS-Based Inertial Navigation --
,
Optical Technologies --
,
Measuring Types and Positioning Techniques --
,
Absolute Positioning Techniques --
,
Relative and Hybrid Positioning Techniques --
,
CP for C-ITS --
,
From Single Sens 0
Additional Edition:
ISBN 9780128129708
Additional Edition:
ISBN 0-12-812970-0
Language:
English