Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin : Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
    UID:
    edochu_18452_9092
    Format: 1 Online-Ressource (35 Seiten)
    Series Statement: Stochastic Programming E-Print Series 2014,2014,2
    Content: Stochastic Programming (SP) has long been considered as a well-justified yet computationally challenging paradigm for practical applications. Computational studies in the literature often involve approximating a large number of scenarios by using a small number of scenarios to be processed via deterministic solvers, or running Sample Average Approximation on some genre of high performance machines so that statistically acceptable bounds can be obtained. In this paper we show that for a class of stochastic linear programming problems, an alternative approach known as Stochastic Decomposition (SD) can provide solutions of similar quality, in far less computational time using ordinary desktop or laptop machines of today. In addition to these compelling computational results, we also provide a stronger convergence result for SD, and introduce a new solution concept which we refer to as the compromise decision. This new concept is attractive for algorithms which call for multiple replications in sampling-based convex optimization algorithms. For such replicated optimization, we show that the difference between an average solution and a compromise decision provides a natural stopping rule. Finally our computational results cover a variety of instances from the literature, including a detailed study of SSN, a network planning instance which is known to be more challenging than other test instances in the literature.
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages