Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • 1
    Language: English
    In: Ecological Modelling, 24 February 2015, Vol.298, pp.16-23
    Description: Chronosequences are a fundamental tool for studying and representing change in Earth surface systems. Increasingly, chronosequences are understood to be much more complex than a simple monotonic progression from a starting point to a stable end-state. The concept of path stability is introduced here as a measure of chronosequence robustness; i.e., the degree to which developmental trajectories are sensitive to disturbances or change. Path stability is assessed on the basis of the largest Lyapunov exponent ( ) of an interaction matrix consisting of positive, negative, or zero entries based on whether existence of a given system state or stage promotes or facilitates (positive), prevents or inhibits (negative), or has no significant effect on transitions to another state. Analysis of several generic chronosequence structures represented as signed, directed, unweighted graphs indicates five general cases: Path-stable reversible progressions ( 〈 0); neutrally path-stable irreversible progressions ( = 0); path unstable with very low divergence (0 〈 〈 1); path unstable with low divergence ( = 1); and complex multiple pathways ( 〉 1). Path stability is probably relatively rare in chronosequences due to the directionality inherent in most of them. A complex soil chronosequence on the lower coastal plain of North Carolina was analyzed as described above, yielding = 0.843, indicating very low divergence. This outcome is consistent with pedological interpretations, and derives largely from the presence of self-limiting early stages, and a few highly developed states that inhibit retrogression back to many of the earlier stages. This kind of structure is likely to be common in pedological and hydrological sequences, but this suggestion requires further testing.
    Keywords: Robustness ; Path Stability ; Chronosequence ; Coevolution ; Earth Surface Systems ; Environmental Sciences ; Ecology
    ISSN: 0304-3800
    E-ISSN: 1872-7026
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages