Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Journal of Hydrology, October 2015, Vol.529, pp.969-979
    Description: Coupling surface and subsurface water flow in fully integrated hydrological codes is becoming common in hydrological research; however, the coupling of surface–subsurface solute transport has received much less attention. Previous studies on fully integrated solute transport focus on small scales, simple geometric domains, and have not utilised many different field data sources. The objective of this study is to demonstrate the inclusion of both flow and solute transport in a 3D, fully integrated catchment model, utilising high resolution observations of dissolved organic carbon (DOC) export from a wetland complex during a rainfall event. A sensitivity analysis is performed to span a range of transport conditions for the surface–subsurface boundary (e.g. advective exchange only, advection plus diffusion, advection plus full mechanical dispersion) and subsurface dispersivities. The catchment model captures some aspects of observed catchment behaviour (e.g. solute discharge at the catchment outlet, increasing discharge from wetlands with increased stream discharge, and counter-clockwise concentration–discharge relationships), although other known behaviours are not well represented in the model (e.g. slope of concentration–discharge plots). Including surface–subsurface solute transport aids in evaluating internal model processes, however there are challenges related to the influence of dispersion across the surface–subsurface interface, and non-uniqueness of the solute transport solution. This highlights that obtaining solute field data is especially important for constraining integrated models of solute transport.
    Keywords: Solute Transport ; Surface–Subsurface Coupling ; Integrated Modelling ; Catchment Modelling ; Geography
    ISSN: 0022-1694
    E-ISSN: 1879-2707
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages