Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Mathematics and Computers in Simulation, 2011, Vol.81(10), pp.2051-2061
    Description: For the simulation of transport processes in porous media effective parameters for the physical processes on the target scale are required. Numerical upscaling, as well as multiscale approaches can help where experiments are not possible, or hard to conduct. In 2009, Bastian and Engwer proposed an Unfitted Discontinuous Galerkin (UDG) method for solving PDEs in complex domains, e.g. on the pore scale. We apply this method to a parabolic test problem. Convergence studies show the expected second order convergence. As an application example solute transport in a porous medium at the pore scale is simulated. Macroscopic breakthrough curves are computed using direct simulations. The method allows finite element meshes which are significantly coarser then those required by standard conforming finite element approaches. Thus it is possible to obtain reliable numerical results for macroscopic parameter already for a relatively coarse grid.
    Keywords: Discontinuous Galerkin Method ; Higher Order ; Unfitted Finite Elements ; Numerical Upscaling ; Flows in Porous Media ; Convection–Diffusion-Problems ; Parabolic Equations ; Computer Science
    ISSN: 0378-4754
    E-ISSN: 1872-7166
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages