Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Soil Biology and Biochemistry, September 2018, Vol.124, pp.168-178
    Description: Substantial amounts of organic matter are mobilized from upper soil layers during extreme precipitation events. This results in considerable fluxes of carbon from plant-associated topsoil to deeper mineral soil and to groundwater. Microbes constitute an important part of this mobile organic matter (MOM) pool. Previous work has shown that specific bacteria associated with the rhizosphere of decaying maize roots were selectively transported with seepage water upon snowmelt in winter. However, effective mechanisms of mobilization and also possible distinctions to microbial transport for living root systems remain poorly understood. In the present study, bacteria in seepage water were sampled from lysimeters at an experimental maize field after extreme rain events in summer. We show that a distinctive subset of rhizoplane-associated bacterial populations was mobilized after summer rain, especially including abundant members of the , representing a microbial conduit for fresh plant-derived carbon inputs into deeper soil layers. Marked distinctions of seepage communities were not observed between lysimeters with a different relative contribution of preferential vs. matrix flow. Time-resolved analyses of seepage water during an artificial rain event revealed temporal patterns in the mobilization of certain lineages, with members of the , , and preferentially mobilized in early and late seepage fractions, and members of the candidate phyla and mobilized mostly in intermediate fractions. While average bacterial cell counts were at ∼10  ml in seepage water, the recovery of amended fluorescently labeled cells of was low (0.2–0.6%) over seepage events. Still, mobilized bacteria clearly have the potential to influence bacterial activities and communities in subsoils. These findings demonstrate that dynamic hydraulic events must be considered for a better understanding of the connectivities between microbial populations and communities in soil, as well as of the links between distinct carbon pools over depth.
    Keywords: Natural Rain ; Artificial Rain ; Preferential Flow ; Seepage Water ; Soil Bacterial Communities ; Agriculture ; Chemistry
    ISSN: 0038-0717
    E-ISSN: 1879-3428
    Source: ScienceDirect Journals (Elsevier)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages