Kooperativer Bibliotheksverbund

Berlin Brandenburg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Language: English
    In: Water Research, 2011, Vol.45(13), pp.3999-4007
    Description: Ozone application is an effective tool to reduce loads of (micro)pollutants in wastewater, however, its ecotoxicological implications are largely unknown. Therefore, the feeding rates of a leaf-shredding invertebrate ( ) exposed to secondary (=non-ozone) or ozone treated wastewater were investigated to assess potential ecotoxicological effects. Two repetitive experiments resulted in significantly higher feeding rates for gammarids exposed to ozone compared to non-ozone treated wastewater sampled from a treatment plant equipped with a full-scale ozonation. A further experiment confirmed these results also for wastewater from the same treatment plant, when ozonation was conducted at the lab-scale. However, the deviations in dissolved organic carbon profiles of ozone and non-ozone wastewater did not seem to be the driving factor for the effects observed. Two additional experiments displayed on the one hand a higher feeding rate of if exposed to ten-fold enriched eluates from solid phase extraction cartridges loaded with ozone compared to non-ozone treated wastewater. On the other hand, the mean feeding rate of gammarids exposed to non-ozone treated wastewater, which contained hardly any (micro)pollutants (i.e. pharmaceuticals), was at the same level as wastewater from the same source additionally treated with ozone. These results suggest that not an alteration in the organic matrix but a reduction in the load of micropollutants most likely triggered the effects in the bioassay applied. Hence, the feeding rate of appears to be a well-suited bioassay to indicate alterations in ecotoxicological properties of wastewater due to the application of advanced oxidation processes like ozonation. ► Ozonation of municipal wastewater reduces ecotoxicity for gammarids. ► Alteration in organic matrix caused by ozonation did not affect gammarids. ► Loads of micropollutants seem to trigger the effects in the feeding assay. ► Feeding assays suggest to be suitable to evaluate advance oxidation techniques.
    Keywords: Pharmaceuticals ; Ozone ; By-Products ; Solid Phase Extraction ; Gammarus ; Feeding Assay ; Engineering
    ISSN: 0043-1354
    E-ISSN: 1879-2448
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages